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Introduction

Cryptography is the science and art of securing communication from
unauthorized access. CIA triad model of information security:

▶ Confidentiality: Information is kept secret from unauthorized parties.

▶ Integrity: Messages are not modified in transit.

▶ Authentication: the verification of a user or system’s identity

https://intellipaat.com/blog/the-cia-triad/?US
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Private-Key Cryptography

▶ Some popular private-key ciphers: Data Encryption Standard (DES),
Advanced Encryption Standard (AES), Triple DES, Blowfish, and RC4.

▶ Repeated application of mixing operations combined in a way that they
are hard to reverse without the private key.

https://www.ssl2buy.com/wiki/symmetric-vs-asymmetric-encryption-what-are-differences
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Public-Key Cryptography

▶ Exchange of confidential information between people who can
communicate only via an insecure channel

▶ First demonstrated in a paper by (Diffie and Hellman, 1976)

▶ Alice and Bob can communicate in public, yet establish a shared, secret
key which is known only to the both of them.

https://intellipaat.com/blog/the-cia-triad/?US
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One-Way Trapdoor Functions

▶ One-way function: easily and efficiently be calculated in one direction, but
is difficult or computationally infeasible to invert.

▶ Trapdoor information: additional piece of information that allows an
efficient inversion

▶ Used to conceal information in public-key cryptographic systems, to ensure
that an adversary cannot invert the function and thereby decrypt the
message, whereas the intended receiver (who has the trapdoor
information) can easily do so.

▶ The existence of a true one-way function has not been proven, but many
functions have been proposed to be one-way, and are used as such with
this assumption.
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Key Establishment

Protocol 1 (Diffie-Hellman Key Exchange)

▶ Alice and Bob agree on a large prime p and an integer g with large prime
order in F∗

p.

▶ Alice chooses a secret a ∈ Z , computes A = ga (mod p). She sends A to
Bob. Her secret key is a, her public key is A.

▶ Bob chooses a secret b ∈ Z and computes B = gb (mod p). He sends B
to Alice. His secret key is b, his public key is B.

▶ Alice computes her shared secret key, KA = Ba (mod p).

▶ Bob computes his shared secret key, KB = Ab (mod p).

Shared key: K = KA = Ba = (gb)a = gba = gab = (ga)b = Ab = KB

(mod p).

Simran Tinani Algebraic Methods in Asymmetric Cryptography –Algorithms, Constructions, and Attacks 7 / 67



Introduction DLP in a Semigroup Nonabelian Group-Based Cryptography Twisted Group-Algebra Key Exchange Algebraic Hash Functions Conclusions Thank You! References

Discrete Logarithm and Diffie-Hellman Problems

Definition (Discrete Logarithm Problem (DLP))

Let G be a finite cyclic group with generator g and let h be an element of G.
Find an exponent x such that gx = h in G. The number x (computed modulo
the order of G) is called the discrete logarithm of h to the base g and is
denoted by logg(h).

Definition (Diffie-Hellman Problem (DHP))

Let G be a finite cyclic group with generator g let h1 = gn1 and h2 = gn2 be
elements of G, provided so that the values of the exponents n1 and n2 are
concealed. The Diffie-Hellman problem requires finding the element gn1n2 in G.

The choice of the representation of G is crucial. Most commonly used are
G = F∗

p or G = E(Fp).
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Post-Quantum One-Way Functions

▶ The discrete logarithm problem and integer factorization are the most
widely used for public key cryptography.

▶ In (Shor, 1994) an efficient (polynomial time) solution to these problems
(more generally, Hidden Subgroup Problem for finite abelian groups) was
shown using a quantum algorithm.

▶ Most present-day public-key cryptosystems will be broken by a quantum
computer with sufficient computational power

▶ 2016: NIST Post-Quantum Cryptography Standardization program

▶ Several approaches have been explored: lattice-based cryptography,
code-based cryptography, multivariate cryptography, and isogeny-based
cryptography.

Simran Tinani Algebraic Methods in Asymmetric Cryptography –Algorithms, Constructions, and Attacks 9 / 67



Introduction DLP in a Semigroup Nonabelian Group-Based Cryptography Twisted Group-Algebra Key Exchange Algebraic Hash Functions Conclusions Thank You! References

This Thesis

▶ Current cryptographic systems and proposals are altogether based on a
relatively small number of one-way functions and mathematical structures
(lattices, codes, elliptic curves, finite fields).

▶ The risk of a novel, efficient attack in the future always looms.

▶ From a long term perspective, it is interesting and important to sustain
research on alternative mathematical structures, algorithms, and one-way
functions

▶ A number of different frameworks have been conceived and investigated
using algebraic objects such as semigroups, non-abelian groups, semirings,
rings, group algebras and modifications thereof.

▶ Alternative structures and one-way functions?

▶ Can we use the rich algebraic structure of these objects to build new
cryptosystems and attacks?
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DLP in a Semigroup
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DLP in a Semigroup

Algorithm 1: Shanks’ Baby-Step Giant-Step Algorithm

▶ Set n = 1 +
⌊√

N
⌋
.

▶ Create two lists, L1 = {1, g, g2, g3, . . . , gn},
L2 = {h, hg−n, hg−2n, hg−3n, . . . , hg−n2

}
▶ Find a match between the two lists, say gi = hg−jn.
▶ Return x = i+ jn. Clearly, x is a solution to gx = h.

This algorithm solves the discrete logarithm problem gx = h in O(
√
N logN)

steps using storage size of O(
√
N).

A semigroup is a set of elements with an associative binary operation.

Definition (Semigroup DLP)

Given y ∈ ⟨x⟩ := {xk | k ∈ N}, find m ∈ N such that xm = y.
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The Discrete Logarithm Problem in a Semigroup

Definition (Torsion Element)

Let S be a semigroup. An element x ∈ S is called a torsion element if the
sub-semigroup ⟨x⟩ := {xk | k ∈ N} generated by x, is finite.

Definition (Cycle Start)

Smallest positive integer sx s.t. xsx = xb for some b ∈ N, b > sx.

Definition (Cycle Length)

The smallest positive integer Lx such that xsx+Lx = xsx .

Definition (Element order)

Cardinality of the sub-semigroup ⟨x⟩. Note that Nx = sx + Lx − 1.

Simran Tinani Algebraic Methods in Asymmetric Cryptography –Algorithms, Constructions, and Attacks 13 / 67



Introduction DLP in a Semigroup Nonabelian Group-Based Cryptography Twisted Group-Algebra Key Exchange Algebraic Hash Functions Conclusions Thank You! References

What changes without inverses

▶ Collision-based algorithms for order and discrete log computations in a
group do not adapt directly to a semigroup.

▶ Principle for collision-based algorithms for an order N group element x:
N = A−B ⇐⇒ xA = xB for A,B ≥ 0.

▶ For a semigroup element x with cycle start sx and cycle length
Lx = A−B for A,B ≥ 0, xA = xB ⇐⇒ A,B ≥ sx.

▶ Example Lx = 15, sx = 10, y = x5. Then y · x6 = x11 = x26 is obtained
as a collision. Unlike in the group case, the conclusion y = x26−6 = x20 is
wrong since x5 ̸= x20. Problem: x is not invertible.
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Discrete Logarithm Problem in a Semigroup

Lemma 1 (Banin and Tsaban, 2016)

The set Gx = {xsx+k | k ≥ 0} of x ∈ S forms a finite cyclic group of order
Lx with identity xtLx , where t is the minimum positive integer such that
xtLx ∈ Gx.

▶ The authors of (Banin and Tsaban, 2016) assume the availability of a
‘Discrete Logarithm Oracle’ for the group Gx, which returns values logx h
for h ∈ Gx.

▶ They state that these values need not be smaller than the group order but
are polynomial in the size of Gx and the element x.

▶ The representation of the identity in Gx is unknown, and a method to
compute inverses is not available.

▶ A different probabalistic approach is also described in (Monico, 2002).
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Algorithm 2: Deterministic Algorithm for Cycle Length

Input A semigroup S and a torsion element x ∈ S.
Output Cycle length Lx of x

▶ Initialize N ← 1.
▶ Set q ← ⌈

√
N⌉.

▶ Compute, one by one, xN , xN+1, . . . , xN+q and check for the equality
xN = xN+j at each step j ≥ 1. Store these values in a table as pairs
(N + j, xN+j), 0 ≤ j < q. If xN = xN+j for any j < q, then set Lx ← j
and end the process. If not, proceed to the next step.

▶ For 0 ≤ i ≤ q, compute, one by one, the values xN+q, xN+2q, . . . , xN+iq

and at each step i, look for a match in the table of values calculated in
Step (3).

▶ Suppose that a match xN+iq = xN+j is found, and i is the smallest integer
such that this happens. Set Lx ← iq − j and end the process.

▶ If no match is found in steps 3 or 5, set N ← 2 ·N and go back to Step (2).

Once cycle length is known, cycle start can be found in polynomial time using
binary search.
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Correctness and Complexity

Theorem 1

Let S be a semigroup and x ∈ S a torsion element with order Nx. If an upper
bound on Nx is known, Algorithm 2 returns the correct value of the cycle
length Lx with

O
(√

Nx · (logNx)
2
)

steps. The total space complexity is O
(√

Nx

)
semigroup elements.

Simran Tinani Algebraic Methods in Asymmetric Cryptography –Algorithms, Constructions, and Attacks 17 / 67



Introduction DLP in a Semigroup Nonabelian Group-Based Cryptography Twisted Group-Algebra Key Exchange Algebraic Hash Functions Conclusions Thank You! References

Solving the DLP once the cycle length is known

Algorithm 3: Algorithm for Discrete Logarithm
Input A semigroup S, a torsion element x ∈ S, with cycle length Lx and
cycle start sx, and y ∈ S with y = xm.

Output The discrete logarithm m of y with base x.

▶ Compute t =
⌈

sx
Lx

⌉
and define x′ = xtLx+1 ∈ Gx.

▶ Find the minimum number 0 ≤ b ≤ t such that y′ = y · xbLx ∈ Gx using
binary search.

▶ Use Shanks’ Baby-Step Giant-Step algorithm for the group ⟨x′⟩ ⊆ Gx to
compute m′ ∈ {0, 1, . . . , Lx − 1} such that (x′)

m′
= y′.

▶ Find the maximum number c ≥ 0 such that x(tLx+1)m′−cLx ∈ Gx using
binary search.

▶ Return m = m′(tLx + 1)− (b+ c)Lx.
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Results

Proposition 1

Let S be a semigroup, x ∈ S a torsion element and y ∈ ⟨x⟩ any element. The
discrete logarithm m = logx(y) can be computed deterministically in

O
(√

Nx · (logNx)
2
)

steps, with a required storage of O
(√

Nx

)
semigroup elements.

Theorem 2 (Pohlig-Hellman in a Semigroup)

Let S be a semigroup, x ∈ S a torsion element and y ∈ ⟨x⟩ any element.
Assume the cycle start sx of x is known and assume the integer factorization of
the cycle length Lx is known to be Lx =

∏r
i=1 p

ei
i . Then the discrete

logarithm logx y can be computed deterministically in

O
(

r∑
i=1

ei
(
logLx +

√
pi
)
+ (logNx)

2

)
steps. The space complexity of the

algorithm is O
(

r∑
i=1

ei
√
pi

)
semigroup elements.
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Nonabelian Group-Based Cryptography
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Background: Nonabelian Group-based Cryptography

Definition (Discrete Logarithm Problem (DLP))

Given g, h ∈ G with h ∈ ⟨g⟩, find n ∈ Z such that h = gn.

Definition (Conjugacy Search Problem (CSP))

Given g, h ∈ G, find an element x of G such that h = x−1gx, given that it
exists. We adopt the notation gx := x−1gx.

▶ (Anshel, Anshel, and Goldfeld, 1999) and (Ko et al., 2000), built the first
protocols based on the CSP in braid groups.

▶ Several attacks (Hofheinz and Steinwandt, 2002), (Myasnikov, Shpilrain,
and Ushakov, 2006) show that braid groups are not suitable platforms.
Proposed alternatives: polycyclic groups, p-groups, Thompson groups,
matrix groups.
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Key Exchange using Conjugation

Protocol 2 (Ko-Lee protocol)

G is a suitable finitely generated group, with subgroups A and B that
commute element-wise, i.e. ab = ba ∀ a ∈ A, b ∈ B. A base element w ∈ G is
chosen. The parameters G, A, B, and w are made public.

▶ Alice chooses a secret element a ∈ A, and publishes wa = a−1wa.

▶ Bob chooses a secret element b ∈ B, and publishes wb = b−1wb.

▶ Alice computes KA = (wb)a, and Bob computes KB = (wa)b.

Since a and b commute, we have a common shared secret
KA = KB = a−1b−1wab.
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Motivation for this Section

▶ For linear platform groups (i.e. those that embed faithfully into a matrix
group over a field), several polynomial time attacks exist (Kreuzer,
Myasnikov, and Ushakov, 2014), (Myasnikov and Roman’kov, 2015),
(Tsaban, 2015), (Ben-Zvi, Kalka, and Tsaban, 2018).

▶ Often impractical to implement for standard parameter values.

▶ Computation of an efficient linear representation may pose a serious
roadblock for an adversary.

▶ Protocol-specific and focus on retrieving the private shared key without
solving the CSP

▶ So far, the true difficulty of the CSP in different platforms has not been
sufficiently investigated.
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Motivation for this Section

Definition (A-restricted CSP)

Given a subgroup A ≤ G and elements g and h of a group G, find an element
x ∈ A such that h = x−1gx, given that it exists.

We are specifically interested in the case where A is cyclic.

▶ In Ko-Lee, commutativity of conjugators is needed. Interesting abelian
subgroups of several proposed platforms are cyclic.

▶ In Anshel et al., 2007, the amount of information the adversary has is
"proportional" to the number of generators of A.

▶ Case A cyclic is most basic, reductions to it may be possible
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Polycyclic Groups

▶ Suggested as platforms for CSP in (Eick and Kahrobaei, 2004).

▶ Length-based attacks and other heuristic methods for braid groups may be
ineffective.

Definition (Polycyclic Group)

A polycyclic group is a group G with a subnormal series
G = G1 > G2 > . . . > Gn+1 = 1 with cyclic quotient Gi/Gi+1.
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Polycyclic Groups with Two Generators

In the case n = 2, we the group presentation

⟨x1, x2 | xC
1 = xE

2 , x
x1
2 = xL

2 , x
x1

−1

2 = xD
2 ⟩

Lemma 2

The conjugated word (xc
1x

d
2)

−1(xa
1x

b
2)(x

c
1x

d
2) = xg

1x
h
2 with g = a,

h =


−dLa + bLc + d; if c, a ≥ 0

−dLa + bD−c + d; if c < 0, a ≥ 0

−dD−a + bLc + d; if c ≥ 0, a < 0

−dD−a + bD−c + d; if c, a < 0
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CSP in 2-Polycyclic Groups

Theorem 3

If N2 = ord(x2) is finite, the CSP has a polynomial time solution.

Theorem 4

If N2 = ord(x2) is finite, the ⟨x1⟩-restricted CSP in G2 reduces to a DLP.
Further, the elements can be chosen so that it is exactly equivalent to a DLP in
(Z/N2Z)∗.

If N2 =∞, the CSP reduces to the Diophantine integer equation
f = −dLa + bLc + d. The ⟨x1⟩-restricted CSP f = bLc here is easily solved by
taking the real number base-L logarithm of f/b ∈ Z.
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⟨x1⟩-restricted CSP in a Finite 3-Polycyclic group

G = ⟨s, t1, t2 | tθ11 = 1 = tθ22 , tt12 = tL2 , t1
s = t

a
(1)
1

1 t
a
(1)
2

2 , t2
s = t

a
(2)
1

1 t
a
(2)
2

2 ⟩

⟨t1, t2⟩ is 2-polycyclic and s−i(tA1 t
B
2 )s

i = tAi
1 tBi

2 where for i ≥ 0,

Ai+1 =a
(1)
1 Ai + a

(2)
1 Bi (mod θ1),

Bi+1 =a
(1)
2 LAia

(2)
1

LAia
(1)
1 − 1

La
(1)
1 − 1

+ a
(2)
2

LBia
(2)
1 − 1

La
(2)
1 − 1

(mod θ2).

Solving the ⟨s⟩-restricted CSP ≡ finding N from (AN , BN ). For
a
(2)
1 = 0 = a

(1)
2 , this is a DLP in (Z/θ1Z)∗.
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CSP in a Finite (n+ 1)-PC Group; n Generators Commute

G = ⟨s, t1, . . . , tn | tθii = 1, titj = tjti, ti
s = t

a
(1)
i

1 . . . t
a
(n)
i

n , 1 ≤ i, j ≤ n⟩

Representing elements of T as column vectors (r1 . . . , rn), we can describe the
conjugation action of s on T by the map

Zo1 × Zo2 × . . .× Zon → Zo1 × Zo2 × . . .× Zon

(r1, . . . , rn)→


a
(1)
1 . . . a

(n)
1

a
(1)
2 . . . a

(n)
2

... · · ·
...

a
(1)
n . . . a

(n)
n

 ·

r1
r2
...
rn


The ⟨s⟩-restricted CSP constitutes recovering N from the N th power of the
above matrix.

Simran Tinani Algebraic Methods in Asymmetric Cryptography –Algorithms, Constructions, and Attacks 29 / 67



Introduction DLP in a Semigroup Nonabelian Group-Based Cryptography Twisted Group-Algebra Key Exchange Algebraic Hash Functions Conclusions Thank You! References

Matrix Groups

▶ The DLP in GLn(Fq) was studied in (Menezes and Wu, 1997) and
(Freeman, 2004) and shown to be no more difficult than the DLP over a
small extension of Fq.

▶ Most known nonabelian platform groups are linear. If a faithful
representation and its inverse can efficiently be computed, the security of
the system depends on that of the matrix CSP rather than that in the
original platform.

▶ Let X ∈Matn(Fq), Z ∈ GLn(Fq) and Y = Z−rXZr be public matrices.
The ⟨Z⟩-restricted CSP comprises finding r ∈ Z.
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⟨Z⟩-restricted CSP in GLn(Fq)

Let JZ be the Jordan Normal form of Z and θZ be the order of Z in the group
GLn(Fq).

Theorem 5

If JZ is diagonal then the retrieval of r (mod θZ) reduces to solving at most
n2 DLPs over Fqk .

Theorem 6

Let JZ be non-diagonal, and composed of s Jordan blocks. Then, the
computation of r is polynomial time reducible to a set of s2 DLPs over Fqk .
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Applications in Cryptanalysis

▶ Protocol in (Sin and Chen, 2019) based on a "decomposition problem" in
(polycyclic) generalized quaternion groups Q2n is broken by collection and
solving linear equations (mod N).

Q2n = ⟨x, y | xN = 1, y2 = xN/2, yx = x−1y,N = 2n−1⟩.

▶ Protocol in (Valluri and Narayan, 2016) is based on the a ⟨Z⟩-restricted
CSP over quaternions mod p, Hp.

Hp = {a1 + a2i+ a3j + a4k | ai ∈ Zp}.

There is an explicit isomorphism with efficiently computable inverse
Hp
∼= Mat2(Z/pZ) (Tsopanidis, 2020).

▶ "Subgroup CSP" in (Gu and Zheng, 2014) corresponds exactly to the
A-restricted CSP for A cyclic. Suggested platforms are GLn(Fq), a
subgroup of it, and a braid group.
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Twisted Group-Algebra Key Exchange
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Cryptanalysis of a System based on Twisted Dihedral Group Algebras

Let G be a group and F be a field.

Definition (Group Algebra)

The group algebra F[G] is the set of the formal sums
∑
g∈G

agg, with ag ∈ F,

g ∈ G. Addition is defined componentwise:∑
g∈G

agg +
∑
g∈G

bgg :=
∑
g∈G

(ag + bg)g. Multiplication is defined as∑
g∈G

agg ·
∑
g∈G

bgg :=
∑
g∈G

∑
h∈G

(agbh)gh =
∑
k∈G

∑
g∈G, h∈G:gh=k

agbhk.

Definition (2-Cocycle)

A map α : G×G→ F∗ is called a 2-cocycle of G if α(1, 1) = 1 and for all
g, h, k ∈ G we have α(g, hk)α(h, k) = α(gh, k)α(g, h).
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Definition (Twisted Group Algebra)

Let α be a 2-cocycle of G. The twisted group algebra FαG is the set of all
formal sums

∑
g∈G

agg, where ag ∈ F, with the following twisted multiplication:

g · h = α(g, h)gh, for g, h ∈ G. The multiplication rule extends linearly to all
elements of the algebra:

(
∑
g∈G

agg) · (
∑
h∈G

bhh) =
∑
g∈G

∑
h∈G

agbhα(g, h)gh.

Addition is given componentwise.

FαG is associative if and only if α is a 2-cocycle.

Definition (Adjunct)

For an element a =
∑
g∈G

agg ∈ FαG we define its adjunct as

â :=
∑
g∈G

agα(g, g
−1)g−1.
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Public Parameters

▶ m ∈ N and prime p > 2, p | 2n . Set q := pm; Cn := ⟨x⟩.

▶ D2n = ⟨x, y : xn = y2 = 1, yxy−1 = x−1⟩ is the dihedral group of order
2n.

▶ 2-cocycle α = αλ for non-square λ ∈ F∗
q so Fα

q D2n ̸∼= FqD2n.

αλ(g, h) = λ for g = xiy, h = xjy with i, j ∈ {0, . . . , n− 1} and

αλ(g, h) = 1 otherwise

▶ h = h1 + h2 for random 0 ̸= h1 ∈ Fα
q Cn and 0 ̸= h2 ∈ Fα

q Cny.

▶ Γα := {a =
n−1∑
i=0

aix
iy ∈ Fα

q Cny | ai = an−i for i = 1, . . . , n− 1}.

▶ The multiplicative ring of Fα
q Cn is commutative, and ab̂ = bâ ∀a, b ∈ Γα.
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Protocol 3 (Cruz and Villanueva-Polanco, 2022)

▶ Alice chooses a secret pair (s1, t1) ∈ Fα
q Cn × Γα, sends pkA = s1ht1 to

Bob.

▶ Bob chooses a secret pair (s2, t2) ∈ Fα
q Cn × Γα, sends pkB = s2ht2 to

Alice.

▶ Alice computes KA = s1 pkB t̂1,

▶ Bob computes KB = s2 pkA t̂2

▶ The shared key is K = KA = KB
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Security Assumption

Definition (Dihedral Product Decomposition (DPD) Problem)

Let (s, t) ∈ Fα
q Cn × Γαλ be a secret key. Given a public element

h = h1 + h2 ∈ Fα
q D2n, h1 ∈ Fα

q Cn, h2 ∈ Fα
q Cny, and a public key pk = sht,

the DPD problem requires an adversary to compute (s̃, t̃) ∈ Fα
q Cn × Γα such

that pk = s̃ht̃.

Definition (DPD Assumption)

The DPD assumption is said to hold for Fα
q D2n if for all efficient adversaries A

the quantity DPDadv[A, Fα
q D2n] := Prob(s̃ht̃ = sht) is negligible.
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Circulant Matrices

Definition

A matrix over Fq of the form


c0 cn−1 . . . c1
c1 c0 . . . c2
...

...
. . .

...
cn−1 cn−2 . . . c0

 with ci ∈ Fq, is called

circulant. Given a vector c = (c0, c1, . . . , cn−1)
T ∈ Fqn , we use the notation

Mc to denote the circulant matrix Mc :=


c0 cn−1 . . . c1
c1 c0 . . . c2
...

...
. . .

...
cn−1 cn−2 . . . c0

.
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Definition

For b = (b0, b1, . . . , bn−1)
T ∈ Fq

n, c = (c0, c1, . . . , cn−1)
T ∈ Fq

n,
0 ≤ ℓ ≤ n− 1

zℓ(b, c) :=
∑

i+j=ℓ (mod n)

bicj =
(
cℓ, cℓ−1, . . . , cℓ+1

)
·


b0
b1
...

bn−1


.

zb,c = zb,c := (z0(b, c), . . . , zℓ(b, c), . . . , zn−1(b, c))
T = Mc · b.

Mz(b, c) :=


z0(b, c) . . . z1(b, c)
z1(b, c) . . . z2(b, c)

...
. . .

...
zn−1(b, c) . . . z0(b, c)

.

Lemma 3

Mz(b, c) = Mc ·Mb.
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Cryptanalysis

The adversary is given an equation sht = γ over Fα
q D2n, where

s =

n−1∑
i=0

aix
i ∈ Fα

q Cn, t =

n−1∑
i=0

bix
iy ∈ Γα ⊆ Fq

αλD2n

are unknown, and h =
n−1∑
i=0

cix
i +

n−1∑
i=0

dix
iy is known. These reduce to the

following two equations

n−1∑
i,j,k=0

aicjbkx
i+j+ky =

n−1∑
i=0

wix
iy, (1)

λ

n−1∑
i,j,k=0

aidjbkx
i+j+k =

n−1∑
i=0

vix
i (2)

Define vectors a = (a0, . . . , an−1)
T , b = (b0, . . . , bn−1)

T , c = (c0, . . . , cn−1)
T ,

d = (d0, . . . , dn−1)
T , w = (w0, . . . , wn−1)

T , v = (v0, . . . , vn−1)
T in Fqn .

Here, bi = bn−i for each i = 1, . . . , n− 1. Vectors a and b are unknown to the
adversary, while c, d, v, and w are publicly known.

Simran Tinani Algebraic Methods in Asymmetric Cryptography –Algorithms, Constructions, and Attacks 41 / 67



Introduction DLP in a Semigroup Nonabelian Group-Based Cryptography Twisted Group-Algebra Key Exchange Algebraic Hash Functions Conclusions Thank You! References

Cryptanalysis: Reduction to matrix equations

Lemma 4

Equation (1) is equivalent to the matrix equation Mz(b, c) · a = w over Fq.
Equation (2) is equivalent to the matrix equation λMz(b,d) · a = v over Fq.

Proposition 2

Suppose b = (b0, . . . , bn−1) is such that the system of simultaneous equations
λMz(b,d)a = v and Mz(b, c)a = w has a simultaneous solution

a = (a0, . . . , an−1). Then, s =
n−1∑
i=0

aix
i, t =

n−1∑
i=0

bix
iy is a solution of the

equation sht = γ.

Proposition 3

Let the vectors c and d be such that Mc and Md are invertible. Assume that
at least one simultaneous solution (a,b) exists to the matrix equations
λMz(b,d)a = v and Mz(b, c)a = w. Then, for any randomly chosen b ∈ Γα

such that Mb is invertible, the equations λMz(b,d)a = v and Mz(b, c)a = w
have a simultaneous solution a computable in polynomial time.
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Algorithm for Cryptanalysis

Algorithm 4: Cryptanalysis of Key Exchange over Fα
q D2n

Input Parameter λ and the cocycle α = αλ, public element

h =
n−1∑
i=0

cix
i +

n−1∑
i=0

dix
iy, public key γ =

n−1∑
i=0

vix
i +

n−1∑
i=0

wix
iy.

Output A solution (s, t) ∈ Fα
q Cn × Γα satisfying sht = γ. This tuple is

a solution to the DPD problem.
▶ Define vectors in Fqn : c := (c0, . . . , cn−1), d := (d0, . . . , dn−1),

v := (v0, . . . , vn−1), w := (w0, . . . , wn−1).
▶ If Mc or Md is not invertible

Return Fail
▶ Pick a vector b = (b0, . . . , bn−1)← Γα at random.
▶ If Mb is not invertible, repeat step above. If it is invertible, go to next step.
▶ Compute a = λ−1Mz(b, c)

−1w (= M−1
b M−1

d v).
▶ With a = (a0, . . . , an−1), set s =

∑n−1
i=0 aix

i and t =
∑n−1

i=0 bix
iy.

▶ Return (s, t).
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Success Rate

▶ Probability(algorithm fails) = Probability(one of Mc and Md is not
invertible)= 1− (1− 1

q
)2.

▶ This quantity shrinks with increasing values of q and n.

▶ In (Cruz and Villanueva-Polanco, 2022) the smallest values of these
parameters are q = n = 19, for which this probability is ≈ 0.1.

▶ Thus, Algorithm 4 succeeds in cryptanalyzing the system with a
probability of at least 90 percent.

An immediate corollary is that the two-sided multiplication action

(Fα
q Cn × Γα)× Fα

q D2n → Fα
q D2n

(s, t) · h 7→ sht, s ∈ Fα
q Cn, t ∈ Γα

is not injective. In fact, for most values of t and γ ∈ Fα
q D2n, there is a unique

pre-image s ∈ Fα
q Cn such that sht = γ.
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Algebraic Hash Functions
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Methods for Collisions in some Algebraic Hash Functions

A: alphabet; A∗: all finite-length words in A; An: words up to length n in A.

Definition

A length n hash function, or compression function, is a map A∗ → An. A hash
function h : A∗ → An is called a cryptographic hash function if it satisfies the
following properties:

▶ Collision-resistance: it is computationally infeasible to find a pair x, x′ of
distinct messages such that h(x) = h(x′).

▶ Second pre-image resistance: given a message x, it is computationally
infeasible to find another message x′ ̸= x such that h(x) = h(x′).

▶ One-wayness: given a hash value y ∈ An it is computationally infeasible to
find a pre-image x ∈ A such that h(x) = y.

Used in password storage, for verifying the integrity of files, in digital
signatures, and in the construction of MACs (Message Authentication Code).
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Cayley Hash Functions

G: finite group with generator set S = {s1, . . . , sk}; |A| = |S|

Definition (Cayley hash function)

Given an injective map π : A → S, one may define the hash value of the
message x1x2 . . . xk to be the group element π(x1)π(x2) . . . π(xk).

Security ≡ some concise mathematical problem; inherently parallelizable.

Definition (Factorization problem)

Let L > 0 be a fixed constant. Given g ∈ G, return m1, . . . ,mL and ℓ ≤ L,

with mi ∈ {1, . . . , k} such that
ℓ∏

i=1

smi = g.

Babai’s Conjecture: “short" factorisations always exist for finite non-abelian
groups, for all generating sets. Known to be true for some groups, e.g.
SL2(2,Fp), SL2(2,F2k ). However, existing proofs are non-constructive.
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Famous Cayley Hash Functions

Definition (Zémor Hash Function, (Zémor, 1991))

For generators A0 =

(
1 1
0 1

)
, A1 =

(
1 0
1 1

)
of SL2(Fp), a message

m = m1m2 . . .mk ∈ {0, 1}∗ define H(m1 . . .mk) = Am1 . . . Amk .

▶ Euclidean algorithm attack: Specific to generators A0 and A1. Claim in
(Petit and Quisquater, 2011): system is secure with generators A2

0, A2
1.

Definition (Tillich-Zémor Hash function)

Let n > 0 and q(x) be an irreducible polynomial over F2. Write

K = F2[x]/q(x). Consider A0 =

(
x 1
1 0

)
and A1 =

(
x x+ 1
1 1

)
, which are

generators of SL2(K). For a message m = m1m2 . . .mk ∈ {0, 1}∗ define
H(m1 . . .mk) = Am1 . . . Amk (mod q(x)).

▶ Collisions found in (Grassl et al., 2011) using the structure in hash values
of palindromic messages. Security is an open problem for general
parameters.
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Generalizations of Algebraic Hash Functions

Definition (Generalized Zémor hash functions)

Consider the generators A0 =

(
1 α
0 1

)
and A1 =

(
1 0
β 1

)
in the group

SL2(Fpk ). For a message m = m1m2 . . .mk ∈ {0, 1}∗ define the hash value
H(m1 . . .mk) = Am1 . . . Amk .

A0, A1 have order p, so one trivially has collisions of length p with the empty
word. Want to find collisions with length at most, say O(√p).

Definition (Generalized Tillich-Zémor hash functions)

Consider the generatorsA0 =

(
α 1
1 0

)
and A1 =

(
β 1
1 0

)
where α, β ∈ Fpk ,

in the group SL2(Fpk ). For a message m = m1m2 . . .mk ∈ {0, 1}∗ define the
hash value H(m1 . . .mk) = Am1 . . . Amk .
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Collisions from Triangular and Diagonal Matrices

▶ (Petit et al., 2009): if one can produce “sufficiently many" messages whose
images in the matrix groups are upper/lower triangular, then one can find
collisions of the generalized Zémor and Tillich-Zémor hash functions.

▶ The authors use random probabilistic search to find pre-images of
upper/lower triangular matrices

▶ In contrast to some of the previous approaches, we attempt to construct
collisions in a structured and deterministic manner

Problem 1 (Triangularising Zémor Hashes)

Given a matrix C ∈ SL2(Fpk ) formed as product of A0 and A1, find the
conditions under which there exist integers m and n (of size significantly
smaller than pk) such that CAm

0 An
1 is upper/lower triangular, or even diagonal.

Compute m and n if they exist.
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Extending Messages for Triangular Zémor Hashes

Lemma 5

Let k ≥ 1 and α · β ∈ Fp. Let z be any message and C := H(z) be its
corresponding hash value. Assume that a := C[0, 0] ̸= 0. Then, there exist
integers m,n ∈ {0, 1, . . . , p− 1} such that C ·Am

0 ·An
1 is upper triangular.

Corollary 1

Let δ be a bound. Let C := h(z) =

(
a b
c d

)
and m ∈ {0, 1, . . . , p− 1} be

such that both m and n = −c/(β(mcα+ d)) ∈ Fp are smaller than δ. Then
CAm

0 An
1 has length at most 2δ more than C and is upper triangular.

For larger values of p, experiments indicate a very low probability of finding
such values. For 30− 40 digit primes, brute force could no longer find any such
examples.
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Condition for Triangularisability

Proposition 4

If α ·β ̸∈ Fp, then C ·Am
0 ·An

1 is upper triangular for m,n ∈ Fp if and only if for

γ =

(
d((dβ)p−1 − cp−1)

αcp(1− (αβ)p−1)

)
, (3)

we have γp = γ, and m = γ; n =
−c

β(mcα+ d)
.

Lemma 6 (Case k = 2)

Let k = 2 and α · β ̸∈ Fp. As before, let C =

(
a b
c d

)
∈ SL2(Fp2) be an

arbitrary product of finitely many copies of A0 and A1. Then with γ defined as
in (3), γp = γ always holds.
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Condition for Triangularisability

Can we generalize this method to make C ·Am1
0 An1

1 . . . Amr
0 Anr

1 upper/lower
triangular and thereby extend the result to all SL2(Fpk )? For an extension
where multiplication by a product Am

0 An
1 is allowed twice:

Lemma 7

For C :=

(
a b
c d

)
, there exits integers m1,m2, n1, n2 such that

CAm1Bn1Am2Bn2 is upper triangular if and only if the equation

q3x
2y + q2xy + q1y + q0 = 0 (4)

has a solution (x, y) ∈ Fp × Fp, where q0, q1, q2, q3 are given by

q3 = cp
2

αβ((αβ)p
2−1 − 1),

q2 = cp
2

γαβ(γp−1 − (αβ)p
2−1) + dβ((dβ)p

2−1 − 1),

q1 = dβγ(cp
2

γp−1 − (dβ)p
2−1),

q0 = cp
2

γ(γp−1 − 1).

(5)
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Example: Condition for Triangularisability

Example 1

For simplicity, consider the field F25 with generator z5 and α = z35 + 1,
β = z35 + z25 + 1. Consider the hash matrix

C =

(
z45 + z35 + z25 + z5 z45 + z35 + z25 + z5

z35 z45 + z35 + z25

)
.

Here, we have γ = z45 + z5 + 1 and the polynomial in Equation (4) is
(z25 + z5)x

2y + (z35 + z25 + 1)xy + (z35)y + (z45 + z25 + z5). The
⟨(z25 + z5)x

2y + (z35 + z25 + 1)xy + z35y + (z45 + z25 + z5), x
p − x, yp − y⟩ is

trivial, so its Gröbner basis is {1}. So, no solution exists.
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Generalized Tillich-Zémor Hash Functions

Consider the generalized Tillich-Zémor hash function ϕ with the generators

A0 =

(
α 1
1 0

)
and A1 =

(
β 1
1 0

)
where α, β ∈ Fpk .

Consider the matrix Y =

(
x 1
1 0

)
and first compute its powers.

Y n =

(
fn(x) fn−1(x)

fn−1(x) fn−2(x)

)
, n ≥ 2 (6)

where f0(x) = 0, f1(x) = 1, and

fn(x) = xfn−1(x) + fn−2(x) (7)

It is clear that the recurrence relation (7) fully describes the powers of the
matrix Y .
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Computing fn(x) for characteristic p ̸= 2

We may solve (7) by finding roots of the auxiliary polynomial t2 − xt− 1 = 0.
It can be shown that for any n ≥ 1, we have

fn(x) =
1

2n+1

 ∑
0≤i≤n, n−i is even

(n−i)/2∑
j=0

(
n+ 1

i

)(
(n− i)/2

j

)
2n−2jxi+2j

 ∈ Fp[x]

Powers of A0 and A1 may therefore be computed in constant time.
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Condition for Collisions

▶ Fpk is viewed through the isomorphism Fpk
∼= Fp[x]/⟨q(x)⟩ where q(x) is

an irreducible polynomial of degree k over Fp.

▶ Thus, γ ∈ Fpk is a polynomial of degree smaller than k, say γ = gγ(x).

▶ fn(γ) can be calculated as a polynomial modulo q(x) by simply composing
fn and g, i.e. fn(γ) = fn(gγ(x)) (mod q(x)).

Lemma 8

Suppose that the adversary can compute integers m and n such that
fn−1(gα(x)) = fm−1(gβ(x)) (mod q(x)) and fn−2(gα(x)) = fm−2(gβ(x))
(mod q(x)). Then, the adversary can compute a collision of size
O(max(m,n)) for the Generalized Tillich-Zémor hash function ϕ.

▶ Even for the simplest equation fn(x) = 0 (mod q(x)), finding a solution
for n is not straightforward, since n occurs both as a polynomial term and
in the exponent of 2.
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Condition for Collisions

Lemma 9

Let Fp[x]/⟨q(x)⟩ be a finite field. If an adversary can find integers m and n
such that the following relations hold

fm(fn(x)) + fm−1(fn−1(x)) = 1 (mod q(x))

fm(fn−1(x)) + fm−1(fn−2(x)) = 0 (mod q(x))

fm−1(fn(x)) + fm−2(fn−1(x)) = 0 (mod q(x))

fm−1(fn−1(x)) + fm−2(fn−2(x)) = 1 (mod q(x)),

then H(0m1n) = H() gives a collision with the hash H() of the empty word.
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Malicious Design for Finite Field

▶ If q(x) is chosen such that Y has a known and “small enough"
multiplicative order ny, then also A0 and B0 have small multiplicative
orders which divide ny, and can therefore be calculated easily.

Proposition 5

▶ If one can find N such that gcd(fN (x)− 1, fN−1(x)) has an irreducible
divisor q(x) of degree d, one can find a collision of size O(N) for the hash
function ϕ(x) over the finite field Fp[x]/⟨q(x)⟩.

▶ Given a fixed finite field Fp[x]/⟨q(x)⟩, if one can find an integer N such
that q(x) divides gcd(fN (x)− 1, fN−1(x)) then one can find collisions of
size O(N) for ϕ.
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Conclusions
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Conclusions

▶ The generalized Zémor and Tillich-Zémor hash functions have several
novel theoretical attack methods, but in practice they show resilience to
these and remain promising with certain generator sets.

▶ Algebraic structures such as nonabelian groups and (twisted) group
algebras have multiple options for promising one-way functions.

▶ However, the construction of public key systems often requires one to
introduce a great deal of mathematical structure which also brings in more
attack surface.

▶ E.g. restriction of conjugating elements to certain sets, choice of the
2-cocycle. Resulting cryptosystems rely on more complicated problems
that may not be one-way.

▶ Workarounds to extend existing attack methods exist for certain modified
problems, such as semigroup DLPs.

▶ The right combination of an efficient platform, a reliable one-way function,
and a method to exploit these to construct a cryptosystem, is rare!
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