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Abstract

Mathematical theory constitutes the foundation for the majority of constructions
and algorithms in public-key cryptography. A paramount notion in cryptography
is that of a one-way trapdoor function, which is a mathematical function that can
efficiently be calculated in one direction, but is difficult or computationally infeasible
to invert. Algebra, number theory and algebraic geometry serve as a rich pool of well-
studied presumed one-way functions, and therefore lie at the core of the construction
of mainstream cryptographic protocols.

The widely used Diffie-Hellman and RSA protocols are based, respectively, on the
difficulty of the discrete logarithm problem of factoring of large integers. While they
have shown consistent resilience to classical attacks, Peter Shor showed an efficient
theoretical attack on these systems using a quantum algorithm. Therefore, post-
quantum cryptography, viz. the study of cryptosystems that are resilient to attacks
by quantum (and classical) algorithms, is a critical area of research. Towards this
goal, a number of standard approaches have been explored extensively, including
lattice-based cryptography, code-based cryptography, and isogeny-based cryptogra-
phy. Some of these have already been selected for standardization by NIST.

Nevertheless, from a long term perspective, it is interesting and important to sustain
research on alternative mathematical structures, algorithms, and one-way functions
for applications in post-quantum public-key cryptography. Several different frame-
works have been conceived and investigated in this direction, using algebraic objects
such as semigroups, nonabelian groups, semirings, rings, semigroup actions, group
algebras and modifications thereof. For these proposals to gain legitimate consider-
ation for real-world cryptography, extensive research is required on their efficiency
and security properties. This thesis is an attempt in this direction.

The first prefatory chapter of this thesis provides a brief introduction to some key
concepts in cryptography, and thereby sets the stage for the rest of the chapters. In
Chapter 2, we study the complexity of the discrete logarithm problem in different
platforms, particularly in semigroups, where inverses are not necessarily available,
so the typical collision-based algorithms fail. In Chapter 3, we study the complexity
of the conjugacy search problem, which has repeatedly been proposed as a one-
way function, in some potential nonabelian groups. In Chapter 4, we provide a
cryptanalysis of a key exchange system based on a form of modified group algebras.
Finally, Chapter 5 studies some deterministic methods of producing collisions in
generalizations of some well-known group-based hash functions.
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Chapter 1

Introduction

Cryptography is the science and art of securing communication from unauthorized
access by transforming information into a form that is unintelligible to an unap-
proved entity. Modern cryptography is a highly consequential field of study and
practice, and a critical component of the rapid digitalization process we currently
witness, since it facilitates secure data storage, message exchange, financial trans-
actions, and military communication across insecure channels such as the internet.
It plays a crucial role in each of the aspects of the now well-known CIA triad model
of information security:

1. Confidentiality: Information is kept secret from unauthorized parties.

2. Integrity: Messages are not modified in transit.

3. Authentication: The sender of a message is as claimed.

While the formal study of cryptography is fairly recent, the subject has a rich and
intriguing history. The first section of this chapter provides a brief summary of a
selection of historical events that have shaped cryptography in its present form.

1.1 History

The generation, storage and transport of written information together form one
of the key defining characteristics of human civilization. Imaginably, the need to
protect the confidentiality of some of this information would have arisen shortly after,
if not in parallel, to the phenomenon of its creation and storage. It is therefore not
surprising that cryptography has been around for thousands of years in a vast range
of different forms.

The use of ciphers dates back at least to 1900 BCE in Ancient Egypt, where hi-
eroglyphs were used to encode messages on tombs and monuments. The Spartans
of Ancient Greece (c. 400 BCE) are known to have used a transposition cipher to
protect military communications. The Caeser Cipher, one of the simplest and most
widely known encryption techniques was used by Julius Caeser (100-44 BCE) for
military purposes during the Roman times.
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Chapter 1 Introduction

A variety of different ciphers have been developed across history, many emerging to
enhance the chances of preserving security. In a substitution cipher, each letter of
the message is replaced by another letter or symbol. These are the oldest known
ciphers, of which the shift Caeser cipher is an example. In transposition ciphers, the
order of the letters of the alphabet is permuted to generate the secret text.

Various methods of steganography, i.e. the practice of hiding a secret message inside
of something that is not secret, were developed during the Middle Ages (c. 1000-1500
CE), including invisible ink and messages hidden in wax tablets. Polyalphabetic ci-
phers, under which multiple secret alphabets are used to encode a message according
to some key, are believed to have been developed during the Renaissance (c. 1500-
1600 CE).

Structured methods for cryptanalysis, i.e. the decoding of secret messages by an
unintended, unauthorized entity (without prior access to the key), seem to have
emerged later on. In the Arab world of c. 800 CE, one finds the development
of the cryptanalytic technique of frequency analysis, which involves analyzing the
frequency of letters in a message to break a substitution cipher.

The use of ciphers and cryptanalysis in political and military applications became
increasingly pervasive after the widespread deployment of long-range communica-
tion methods during the eighteenth, nineteenth, and early twentieth centuries. The
British interception and decoding of the secret Zimmermann Telegram sent by Ger-
many to Mexico during World War I was responsible for propelling the earlier neutral
United States into the war.

During World War II, Germany used its machine cipher, the Enigma machine, for
secret communication. This was a device containing a series of spinning rotors
whose paths generated a complicated polyalphabetic cipher. The British, aided by
Polish cryptographers, deciphered a large number of messages encrypted on Enigma
machines. This played a crucial role in the victory of the Allies in the war.

Up to this point, every known form of cryptography employed used secret prede-
cided keys. The seminal development of public-key systems pioneered by Diffie and
Hellman [27] in 1976, combined with the coming of the digital age, has led to a mas-
sive overhaul of the field of cryptography and an explosion in applications in secure
online communication, financial transactions, and military communication. Modern
cryptography comprises a vast and rich field of study and practice, whose signifi-
cance continues to expand rapidly in parallel with our progress into the information
age.
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Chapter 1 Introduction

1.2 Mathematics and Cryptography

Cryptography comprises an expansive and deep interdisciplinary subject, drawing
from the fields of mathematics, computer science and engineering. Mathematical
theory constitutes the foundation for the majority of constructions and algorithms
in cryptography, particularly those found in public-key cryptography. Concepts from
algebra, number theory and algebraic geometry lie at the core of mainstream crypto-
graphic protocols, as well as methods for cryptanalysis. Concepts from probability
theory and statistics are used to analyse the security of cryptographic systems.

One-way trapdoor functions, which are defined formally in Section 1.5, are derived
from hard mathematical problems whose solutions are established through years
of mathematics research to be computationally too expensive to be implemented
without access to the trapdoor information. In order to establish a cryptosystem
from a one-way trapdoor function, one needs, in addition, a suitable structural and
algorithmic framework, an efficient representation of information and an efficient
method for computing with the one-way function.

Several of the structural frameworks, methods, algorithms and one-way functions
used in public-key cryptography, as well as methods for cryptanalysis and security
verification come from algebra, number theory and algebraic geometry. Mathemat-
ical one-way functions arising from these disciplines form the basis of today’s most
used public-key cryptosystems, the Diffie-Hellman and RSA protocols, which are
disucussed in more detail in Section 1.5. Algebraic structures such as finite fields
and elliptic curve groups are used as the base structures for these systems, allowing
efficient arithmetic on data and keys.

1.2.1 New one-way functions and post-quantum
cryptography

The one-way functions underlying the Diffie-Hellman and RSA protocols are, re-
spectively, the discrete logarithm problem and the factoring of large integers. While
the Diffie-Hellman and RSA protocols have shown consistent resilience to classical
attacks, it was shown in [90] that there exists an efficient (polynomial time) attack
on these systems using a quantum algorithm. The dire consequence of this ground-
breaking result is that many present-day public-key cryptosystems would be broken
when a quantum computer with sufficient computational power is invented. For
this reason, post-quantum cryptography, viz. the study of (public-key) cryptosys-
tems that are resilient to attacks by quantum (as well as classical) algorithms, is a
critical area of research.

Towards this goal, a number of approaches have been explored, including lattice-

3
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based cryptography, code-based cryptography, multivariate cryptography, and isogeny-
based cryptography. In 2016, NIST (National Institute of Standards and Technol-
ogy) launched the Post-Quantum Cryptography Standardization program to stan-
dardize potentially quantum-secure cryptographic primitives. As of the last official
update in 2022, lattice-based key exchange, encryption, and signature schemes have
been selected for standardization, while some code-based and isogeny-based alter-
natives are also still being considered.

1.3 Computational Complexity

Before we delve in to the mathematical theory of cryptography, we first quickly
elucidate some important terminology in complexity theory. This is important to
clarify the context to the reader when references to the efficiency of algorithms is
made later on.

Definition 1.1 (Order Notation). Let f(x) and g(x) be positive-valued functions
of x. We say that “f is big-O of g” and write f(x) = O(g(x)) if there are positive
constants c and C such that f(x) ≤ cg(x) ∀ x ≥ C.

When talking about the complexity of an algorithm, we are interested in knowing the
number of steps (time) and sometimes, the storage space required for the completion
of the algorithm. These are both typically calculated relative to the size of the input
to the algorithm, usually measured in bits.

An algorithm is said to be polynomial time (or to have polynomial complexity) if for
an input size of O(k) bits, there is a constant c ≥ 0 such that the algorithm takes
O(kc) steps. On the other hand, if for inputs of size O(k) bits, there is a constant
c > 0 independent of k such that the algorithm takes O(eck) steps, then the running
time is exponential. An algorithm has subexponential complexity if for input size
k, its running time is O(2kϵ) for some ϵ > 0. In the context of cryptography,
an algorithm referred to as efficient or fast is typically polynomial time, whereas
exponential time algorithms are normally infeasible to execute.

A problem is said to be polynomial (resp. exponential) time if the best known
algorithm for its solution is polynomial (resp. exponential) time. A problem is said
to be subexponential time if for for an input size of k bits, for every ϵ > 0 there exists
an algorithm which solves the problem in time O(2k

ϵ
). In other words, the running

time grows faster than any polynomial function, but slower than any exponential
function.

Having described this terminology, we are now ready to explore the theory of math-
ematical cryptography in more depth.
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1.4 Private Key Cryptography

Private-key cryptography, also known as secret-key or symmetric-key cryptography,
is the branch of cryptography under which the communicating parties encrypt and
decrypt their messages using a single shared secret key that the adversary does not
possess. A prerequisite for this is that the communicating parties need to have a
secure medium to exchange the secret key beforehand.

Denote byM ,K and C the sets of plaintext messages, keys, and ciphertext messages,
respectively. Encryption and decryption may be viewed respectively as functions e, d

e : K ×M → C

d : K × C →M

such that for all k ∈ K, m ∈ M , d(k, e(k,m)) = m. It is in general assumed that
an adversary knows the method for encryption and decryption, i.e. the functions e
and d. The lack of knowledge on the key k ∈ K used is what prevents the adversary
from decrypting a message.

For (K,M,C, e, d) to be a successful cipher, it must satisfy the following properties:

1. Efficient evaluation: For a key k ∈ K and plaintext m ∈ M , it must be easy
to compute the ciphertext c = e(k,m) and the plaintext d(k, c).

2. Infeasible illegitimate decryption: Given ciphertexts

c1 = e(k,m1), c2 = e(k,m2), . . . , cn = e(k,mn)

encrypted using the key k ∈ K, it must be very difficult to compute any of
the corresponding plaintexts

m1 = d(k, c1), . . . ,mn = d(k, cn)

without knowledge of k.

Some other desirable properties typically demanded in practice are:

3. Known Plaintext Security: Given ciphertexts

c1 = e(k,m1), c2 = e(k,m2), . . . , cn = e(k,mn) ∈ C

encrypted using the key k ∈ K along with their corresponding plaintexts

m1, . . . ,mn,

it must be infeasible to decrypt any ciphertext c = e(k,m), c ̸= ci ∀i, 1 ≤ i ≤ n
that is not in the given list, without knowing k.

5
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4. Chosen Plaintext Security: An attacker who is allowed to use an oracle to
decrypt any chosen set of ciphertexts

c1 = e(k,m1), c2 = e(k,m2), . . . , cn = e(k,mn) ∈ C,

is unable to decrypt a ciphertext c = e(k,m), c ̸= ci ∀i, 1 ≤ i ≤ n not in the
given list, without knowing k.

Some popular private-key ciphers are Data Encryption Standard (DES), Advanced
Encryption Standard (AES), Triple DES, Blowfish, and RC4. The security of most
efficient modern private key cryptosystems relies on repeated application of various
mixing operations that are combined in a way that they are hard to reverse without
the private key.

As mentioned before, private key cryptography cannot be used by itself for informa-
tion exchange between people who have not exchanged a key beforehand. However,
private key cryptosystems are used extensively for internet communications in con-
junction with public key cryptosystems. In fact, since private key cryptography
tends to be significantly more efficient than public key cryptography, it is typically
the preferred method for message encryption, while a public key cryptosystem is
used a priori for key exchange. In the main chapters of this thesis, we are concerned
exclusively with public key systems.

1.5 Public Key Cryptography

The revolutionary 1976 paper of Diffie and Hellman [27] first introduced the idea of
public-key cryptography to the mainstream. It was the first public demonstration
of the exchange of confidential information between two people who can communi-
cate only via a channel that is being monitored by an adversary. In a public key
cryptosystem, the communicating parties, call them Alice and Bob, each have two
keys, one kept private and the other published publicly.

Using a key exchange scheme, Alice and Bob can communicate in public, yet estab-
lish a shared, secret key which is known only to the both of them. In an encryption
scheme, the public key of Alice can also be used by anyone in the world to encrypt
messages and send them to Alice, but only she can decrypt them with her private
decryption key. Similarly, a digital signature scheme allows Alice to use her keys to
attach proof of her identity to her messages, allowing the receiver to validate the
source and integrity of data.

A paramount notion in cryptography is that of a one-way trapdoor function. A one-
way function, put loosely, is a mathematical function that can easily and efficiently
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be calculated in one direction, but is difficult or computationally infeasible to invert.
The existence of a true one-way function has not been proven, but many functions
have been proposed to be one-way, and are used as such with this assumption.

Moreover, if there exists a piece of additional information, called the trapdoor infor-
mation, which allows an efficient inversion, the function is called a one-way trapdoor
function. One-way trapdoor functions are used extensively to conceal information
in public-key cryptographic systems, to ensure that an adversary cannot invert the
function and thereby decrypt the message, whereas the intended receiver (who has
the trapdoor information) can easily do so.

We will see in this section that one-way functions and one-way trapdoor functions
play a key role in constructing public-key protocols. We begin by describing the
Diffie-Hellman key exchange protocol.

1.5.1 Discrete log-based encyrption

Protocol 1.1 (Diffie-Hellman Key Exchange).

1. The two parties, Alice and Bob, agree on a large prime number, p and an in-
teger g having large prime order in F∗

p. Typically, g is chosen to be a primitive
root modulo p.

2. Alice chooses a secret integer a and computes A = ga (mod p). She sends A
to Bob. Her secret key is a, and her public key is A.

3. Bob chooses a secret integer b and computes B = gb (mod p). He sends B to
Alice. His secret key is b, and his public key is B.

4. Alice computes her shared secret key, KA = Ba (mod p).

5. Bob computes his shared secret key, KB = Ab (mod p).

Note that KA = Ba = (gb)a = gba = gab = (ga)b = Ab = KB (mod p). Thus, both
Alice and Bob end up with the same shared secret key K = KA = KB, which can
then be used for symmetric encryption.

We note that the Diffie-Hellman key exchange protocol is efficient to implement:
the exponentiation operation gx in a finite group can be done with the square-and-
multiply method, which takes a small multiple of log2(x) group multiplications to
compute.

The security of the Diffie-Hellman key exchange relies on the computational difficulty
of the discrete logarithm problem in a finite field Fp, which is presumed to be a one-
way function for large primes p. We state this problem in its general form below.

7



Chapter 1 Introduction

Definition 1.2 (Discrete Logarithm Problem (DLP)). Let G be a finite cyclic
group with generator g and let h be an element of G. The discrete logarithm
problem is the problem of finding an exponent x such that gx = h in G. The
number x (computed modulo the order of G) is called the discrete logarithm of h to
the base g and is denoted by logg(h).

To find one of the private keys a or b in the Diffie-Hellman key exchange, the
adversary needs to solve the discrete logarithm problem with base g in the group
G = F∗

p. However, the difficulty of obtaining the shared key is equivalent to the
following algorithmic problem.

Definition 1.3 (Diffie-Hellman Problem (DHP)). Let G be a finite cyclic
group with generator g let h1 = gn1 and h2 = gn2 be elements of G, provided so that
the values of the exponents n1 and n2 are concealed. The Diffie-Hellman problem
requires finding the element gn1n2 in G.

It is clear that a solution to the DLP also gives a solution to the DHP, so the DHP is
at most as difficult as the DLP. Whether the converse holds is, however, not known.
While it is believed that the Diffie-Hellman and Discrete Logarithm Problems are
equivalent, a proof is not known.

In their original paper [27], Diffie and Hellman use the platform group G = F∗
p for

key exchange. However, it later turned out that using a group G = E(Fp) of points
on an elliptic curve over a finite fields provides better security. Arithmetic in the
groups F∗

p and E(Fp) is fast, so the protocol is efficiently implementable in both. The
best known general algorithm to solve the DLP in F∗

p for any p is subexponential,

while in a suitably chosen elliptic curve group, it is exponential, taking O(
√
|G|)

steps, which has been shown to be optimal. The elliptic curve Diffie-Hellman is
currently the state-of-the-art algorithm for classical key exchange.

We note that the Diffie-Hellman protocol can be used only for exchanging keys, but
requires additional apparatus if it is to be used for message encryption or authenti-
cation. In 1985, Taher ElGamal showed the construction of a public-key encryption
cryptosystem based on the discrete logarithm problem, building on the ideas of Diffie
and Hellman.

Protocol 1.2 (ElGamal Encryption Scheme).

1. The two parties, Alice and Bob, agree on a large prime number, p and and a
primitive root g mod p.

2. Alice chooses a secret integer a and computes A = ga (mod p). She sends A
to Bob. Her secret key is a, and her public key is A.

8
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3. Bob chooses a random secret integer b and computes his public key B = gb

(mod p) and the shared secret key K = Ab (mod p).

4. Encryption: To encrypt his message m, Bob computes the ciphertext C = m·K
(mod p) and sends the pair (B,C) to Alice.

5. Decryption: Alice computes the shared key K = Ba (mod p) and the plaintext
message m = C ·K−1 (mod p).

It can be shown easily that the difficulty of decrypting the message for an adversary
is equivalent to the difficulty of solving the Diffie-Hellman problem. The security
of the ElGamal system is therefore based on the difficulty of the discrete logarithm
problem.

1.5.2 Algorithms for the discrete logarithm problem

As discussed, the security of the Diffie-Hellman protocol relies on the difficulty of
solving the discrete logarithm problem in the group G = F∗

p. For general groups,
brute force provides an obvious theoretical solution. One can compute the list of
values g, g2, g3, . . . until equality with h is reached. If g has order n, then this
algorithm is guaranteed to find the solution in at most n exponentiation steps. For
sufficiently large n, this is not practically feasible with the computing power available
today. At present, it is recommended that the prime p is at least 2048 bits long.

Another approach for a general group is collision-based algorithms, which rely on
finding matches between lists of elements, and using these to solve the DLP. Below,
we describe one such algorithm, Shanks’ Baby-Step Giant-Step Algorithm [89]. Let
G be a group and let g ∈ G be an element of order N ≥ 2.

Algorithm 1.1: Shanks’ Baby-Step Giant-Step Algorithm

1: Set n = 1 +
⌊√

N
⌋
.

2: Create two lists, L1 = {1, g, g2, g3, . . . , gn},
L2 = {h, hg−n, hg−2n, hg−3n, . . . , hg−n2}

3: Find a match between the two lists, say gi = hg−jn.
4: Return x = i+ jn. Clearly, x is a solution to gx = h.

This algorithm solves the discrete logarithm problem gx = h in O(
√
N logN) steps

using storage size of O(
√
N). Clearly, although both are exponential time, this

approach is far more efficient than the brute force algorithm. Pollard’s rho algorithm
[81] is another collision-based method, with the same O(

√
N logN) time complexity,

but with no storage space requirement. It works by iteratively generating a sequence

9
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of group elements, and eventually detects a cycle in this sequence, which it then uses
to solve the discrete logarithm problem.

1.5.3 Factoring-based encryption

We now describe the RSA public-key cryptosystem [84], which, like ElGamal, is
used for secure communication and encryption. It is named after its inventors, Ron
Rivest, Adi Shamir, and Leonard Adleman. The RSA cryptosystem has been widely
used for secure communication, and remains one of the most popular public-key
cryptosystems in use today.

Protocol 1.3 (RSA Encryption Scheme).

1. Key generation: Alice selects two large secret primes p and q and computes
N = pq. She chooses encryption exponent e with gcd(e, (p − 1)(q − 1)) = 1
and publishes (N, e) as the public key.

2. Encryption: Bob selects his plaintext m and computes c = me (mod N) using
Alice’s public key. He sends c to Alice.

3. Alice computes d satisfying ed = 1 (mod (p − 1)(q − 1)). She can do this in
polynomial time using the Euclidean algorithm, since she knows (p− 1)(q− 1)
from her knowledge of p and q.

4. Decryption: Alice computes m′ = cd (mod N).

We have m′ = cd (mod N) = (me)d (mod N) = med (mod N) = m (mod N),
where the last step follows from the fact that |(Z/nZ)∗| = ϕ(N) = (p − 1)(q − 1),
so since m ∈ (Z/nZ)∗ and ed = 1 (mod ϕ(N)), we must have med = m (mod N).
Therefore, Alice recovers the correct message sent by Bob.

Recall that the security of the Diffie–Hellman and the ElGamal systems relies on
the difficulty of solving equations of the form ax = b (mod p) for x unknown. On
the other hand, the RSA algorithm relies on the principle that solving an equation
xe = c (mod N) for x is easy if one knows the prime factorization of N , and difficult
otherwise. When N is a prime, it can be done using the Euclidean algorithm, which
computes the inverse of e modulo N . The only known way for an attacker to
determine the private key from the public key is to factor N into its prime factors.
The security of this cryptosystem thus relies on the difficulty of factoring large
integers. The function x → xe (mod N) is a one-way trapdoor function, with the
trapdoor information being the factorization of N .

10
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1.5.4 Algorithms for Factoring

There is clearly a straightforward brute force attack, in which the adversary tries
every prime below ⌈

√
N⌉ to find a factorization. To avoid brute force attacks on

RSA, it is necessary for the primes p and q to be large enough. At present, p and q
are recommended to be no shorter than 2048 bits. There are a number of algorithms
for the factorization of integers, which therefore also naturally extend to attacks on
the RSA scheme. Pollard’s p − 1 method [81] is a probabalistic algorithm which
uses a variation of Floyd’s algorithm [31] for finding cycles in sequences. It works
efficiently for a certain subset of numbers, demonstrating the existence of insecure
RSA moduli which otherwise appear to be secure.

The quadratic sieve algorithm [82] is one of the most powerful factorization methods
known today, and has been used to factor several RSA challenge numbers. It fixes a
smoothness bound B and a factor base of prime numbers less than B, and searches
for numbers x such that x2−n is smooth over the factor base. The process involves
two fundamental steps: sieving, which eliminates multiples from a fixed set of inte-
gers, and linear algebra, which solves a set of congruence equations. These solutions
are then combined to form a factorization of the original composite number.

The number field sieve [55] is a generalization of the quadratic sieve algorithm (QS)
which allows for more complex factorizations. It is the quickest known algorithm
for factoring integers larger than a few hundred digits, and is a highly consequential
algorithm in both cryptography and computational number theory. It can also be
used to solve the discrete logarithm problem.

1.5.5 Digital Signatures

A digital signature is a mathematical algorithm used to verify the authenticity and
integrity of electronic documents or messages. Digital signatures are commonly
used in electronic transactions, such as online banking or e-commerce, to ensure
that sensitive information is transmitted securely and that the sender’s identity is
verified.

They can also be used to provide non-repudiation, which means that the sender
cannot deny having sent the message or document once it has been signed with
their private key. This protects both communicating parties from being deceived
by each other by attaching to each message a proof of its origin. This property is
impossible to achieve in a symmetric-key setting in which both Alice and Bob use
the same secret key and thus have the same capabilities.

Under a digital signature protocol, the sender generates a signature from the message
and the private key, using a signature algorithm. Typically, a signature algorithm
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works in two steps: by calculating a hash of the message, and then encrypting it
using the private key. The signature can be verified using the sender’s public key.
The primary security property required from a signature scheme is unforgeability, or
“existential unforgeability”, which means that a party without access to the private
key is not able to forge a valid signature on a message.

Each of the three popular public-key algorithm families, namely integer factorization,
discrete logarithms and elliptic curves, allows us to construct digital signatures.

Protocol 1.4 (RSA Signature Scheme).

1. Key generation: Alice selects large primes p and q and computes n = pq and
an integer e such that 1 < e < (p − 1)(q − 1) and gcd(e, (p − 1)(q − 1)) = 1.
She computes an integer d such that de = 1 (mod (p − 1)(q − 1)). The pair
(n, e) is her public key, and d is her private key. The hash function h is also
published publicly.

2. Signature Generation: Alice first computes a hash value h(M) of her message
M and then computes the signature s(M) as s(M) = h(M)d (mod n). She
sends the pair (M, s(M)) to Bob. Alternatively, she may also choose to encrypt
M before sending it.

3. Signature Verification: On receiving the pair (M, s(M)), Bob computes the
hash value h(M) and v = s(M)e (mod n). If v = h(M), then Bob knows that
the message has not been tampered with and that it was indeed sent by Alice.

As in the RSA encryption scheme, an attacker who can factorize n can compute the
decryption exponent d, and thereby forge signatures on any message and imperson-
ate Alice. However, there exists another attack on the scheme in the form described
above, if the message is not hashed before it is signed. In this case, note that if
an attacker Eve starts with any number s ∈ (Z/nZ)∗, she can compute y = se and
generate a valid message-signature pair (y, s). Bob, on receiving this pair, will verify
the signature and assume it comes from Alice.

Even though this attack requires Eve to choose the signature first, and therefore
allows no control on the semantics of the message, it is unacceptable that the process
verifies forged signatures. For this reason, RSA signature is rarely used in this form,
particularly without pre-hashing the messages. In practice, only certain message
formats are allowed (through a process called padding), allowing the verifier to
distinguish between valid and invalid messages. The probabilistic signature scheme
RSA-PSS is an extension of RSA which is used in practice.

The ElGamal signature scheme is a digital signature scheme based on the discrete
logarithm problem. It consists of two main algorithms: a key generation algorithm
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and a signature generation and verification algorithm.

Protocol 1.5 (ElGamal Signature Scheme).

1. Key generation: Alice chooses a large prime p, a primitive root αpmodp, and
a secret key x ∈ {1, . . . , p − 2}. She computes β = αx (mod p). Her public
key is (p, α, β) and her private key is x.

2. Signature generation: Alice chooses an ephemeral secret key k ∈ {1, . . . , p−2}
and computes r = αk (mod p). She chooses her message m and computes the
hash h = hash(m). Then, she computes s = (h − xr)k−1 (mod p − 1). Her
signature is (r, s).

3. Signature verification: Bob, on receiving the message m and (r, s), computes
h = hash(m), u1 = hs−1 (mod p), u2 = rs−1 (mod p), and v = αu1β−u2

(mod p). The signature is treated as valid if and only if v = r.

The security of the ElGamal signature scheme relies on the difficulty of discrete
logarithm problem in F∗

p. An attacker who can solve the DLP can compute both
the private key d from β and the ephemeral key k from r, and use these to sign
arbitrary messages on behalf of the signer. It can also be shown that the reuse
of the ephemeral key k to sign two different messages allows an attacker to easily
compute both the private keys d and k and therefore to freely forge signatures. As
for the RSA signature scheme, there is also an existential forgery attack on this
scheme, under which an attacker can select the signature first, and then generate
its corresponding message.

The ElGamal signature algorithm is rarely used in practice in the form above. The
Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm
(ECDSA) are used for practical applications, due to shorter signature lengths and
better security properties. We only state the DSA here.

Protocol 1.6 (Digital Signature Algorithm).

1. A trusted party chooses and publishes large primes p and q satisfying p = 1
(mod q) and an element g of order q modulo p.

2. Key generation: Alice chooses secret signing key a ∈ {1, . . . , q − 1} and com-
putes A = ga (mod p). She publishes the verification key A.

3. Signature generation: Alice computes the hash of her message m, h = hash(m)
as an element of Fq. She chooses an ephemeral key k ∈ {2, . . . , q − 1}. She
computes signature r = gk (mod p) (mod q) and s = (h+ ar)k−1 (mod q).

For the DSA to be secure, one needs to protect against two different discrete loga-
rithm attacks in F∗

p and F∗
q. The reuse of the ephemeral key in this case also leads
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to a complete breakdown, so it must be ensured that the ephemeral key is used only
once and then discarded.

1.6 Hash Functions

Let A be an alphabet and A∗ denote the set of all finite-length words in A and
An denote the set of all words up to length n in A. A length n hash function, or
compression function, is a map A∗ → An which takes messages of arbitrary length to
fixed-length message digests. A hash function h : A∗ → An is called a cryptographic
hash function if it satisfies the following properties:

• Collision-resistance: it is computationally infeasible to find a pair (x, x′) of
distinct messages such that h(x) = h(x′). Such a pair (x, x′) is said to produce
a collision of h.

• Second pre-image resistance: given a message x, it is computationally infeasi-
ble to find another message x ̸= x′ such that h(x) = h(x′).

• One-wayness: given a hash value y ∈ An it is computationally infeasible to
find a pre-image x such that h(x) = y.

Hash functions are also often required to exhibit the avalanche effect, under which a
small modification in the message text causes a big change in the hash value. This
prevents the hash value from revealing any information about the message string,
and ensures no visible correlation between the hash values of related strings.

1.6.1 SHA

The Secure Hash Algorithms (SHA), specified in FIPS (U.S. Federal Information
Processing Standard) 180-4, comprises a family of cryptographic hash functions
designed by the US National Security Agency (NSA) and standardized by NIST
[71]. These algorithms are based on block ciphers and comprise of various data
preprocessing and processing transformations such as breaking data into chunks,
padding, circular shift operations, bitwise operations such as logical AND, OR and
XOR, and recombining processed data through concatenation.

Within this family, the SHA-1, SHA-2, and SHA-3 families were successively de-
signed with increasingly stronger encryption in response to hacker attacks. There
have been successful attacks on the collision-resistance of SHA-1 (which produces
160-bit digests), through brute force efforts. For this reason, the length of message
digests has been increased to 224- or 256-bit digests in SHA-2. SHA-0 and SHA-1
are both now obsolete, while the SHA-2 hash function is implemented in some widely

14



Chapter 1 Introduction

used security applications and internet protocols. The interested reader is referred
to the reports [69, 70, 71, 72] for more information on the SHA family.

1.6.2 Applications in cryptography

Hash functions have a number of applications. They are often used in password
storage, so that an attacker with access to the password database can only see
the hashed value and not the actual password, and therefore, cannot hack the users’
accounts. This also renders this process more efficient, since it is no longer necessary
to store arbitrary-length passwords.

Hash functions are also used for verifying the integrity of files transmitted over the
internet. The receiver of the file may download both the file and its hash, recompute
its hash value and compare it to the hash received. The equality of these two values
shows that the message has not been tampered with, even in otherwise unnoticeable
ways. As seen in Section 1.5.5, cryptographic hash functions are also used as com-
ponents of digital signatures. Hash functions are also used in the construction of
MACs (Message Authentication Code), for which they are combined with a secret
key prior to application to the message. MACs are used to ensure the integrity of a
message and to verify that it was sent by an authorized sender.

1.6.3 Security

There are several types of attacks on hash functions. Without detailed descriptions,
we list some of these below.

1. Collision Attacks: the attacker tries to find two different inputs that result
in the same hash output, thereby trying to violate collision-resistance. For
instance, the attacker may hash roughly 2n/2 inputs for a hash function of
length n, and exploit the birthday paradox, which implies that two of these
inputs that have the same hash value with a probability of 50 percent.

2. Preimage Attacks: the attacker tries to find an input that hashes to a fixed
output thereby trying to violate preimage-resistance. This allows them to
substitute the malicious message for a legitimate one, and disrupt the integrity.
If attempted by brute force for a hash function producing an n-bit output, one
can find preimages for in approximately 2n evaluations.

3. Length Extension Attacks: the attacker targets hash functions with a built-in
secret key or seed value. Given the hash output of a message, the attacker
constructs a new message by appending additional data to the original message
and generates a valid hash output without knowing the secret key or seed value.
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4. Side-Channel Attacks: the attacker exploits weaknesses in the implementation
of the hash function, rather than the hash function itself.

1.7 Cryptographic protocols over the internet

Secure communication over public networks like the internet is facilitated by a co-
alescence of private-key encryption systems, public-key systems for key exchange
and signatures, and cryptographic hash functions. Due to variation in functionality,
efficiency and security properties, it is only in a careful sync that these different
primitives may achieve the full power of the internet protocols in current use. We
list a few of the most significant internet protocols for secure communication below.

• Transport Layer Security (TLS): provides security for internet communication
by encrypting data and verifying the identity of the communicating parties.

• Secure Shell (SSH): provides secure remote access to network devices over an
unsecured network

• Pretty Good Privacy (PGP): provides secure email communication by encrypt-
ing the email messages and verifying the sender’s identity.

• Internet Protocol Security (IPsec): provides secure communication at the IP
layer of the network by encrypting and authenticating IP packets.

1.8 Summary of Contributions in this Thesis

Current classical and post-quantum systems are thus altogether based on a rel-
atively small number of one-way functions and mathematical structures (lattices,
codes, elliptic curves, finite fields). While the hardness of breaking these systems
has undergone thorough scrutiny and rigorous research, the risk of a novel, efficient
attack in the future always looms. From a long term perspective, it is therefore in-
teresting and important to sustain research on alternative mathematical structures,
algorithms, and one-way functions that can be applied to public-key cryptography.

A number of different frameworks have been conceived and investigated, including,
but not limited to, algebraic objects such as semigroups, non-abelian groups, semir-
ings, rings, group algebras and modifications thereof. Various abstract and concrete
algorithmic problems within these structures have been constructed or rediscovered,
and proposed as one-way functions, and been used to build novel cryptosystems.
For these proposals to gain legitimate consideration for real-world cryptography, ex-
tensive research is required on their efficiency and security properties. This thesis
is an attempt in this direction.
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In this thesis, we study various algebraic objects, and related algorithmic problems,
cryptographic constructions, and cryptanalytic methods. The present prefatory
chapter of the thesis is aimed at providing a brief introduction to some key con-
cepts in cryptography, and thereby setting the stage for the rest of the chapters in
the thesis. Below, we briefly summarize the chapter-wise themes and contributions.

Chapter 2

In Chapter 2, we study the complexity of the discrete logarithm problem in a semi-
group, where inverses are lacking, so the typical collision-based algorithms fail.

The main contribution of this chapter is a deterministic algorithm for computing the
discrete logarithm of an element y in a semigroup S with respect to some torsion base
element x ∈ S. The time complexity of our algorithm is O(

√
Nx(logNx)

2), where Nx

is the cycle length of x. The previously known algorithms for the discrete logarithm
problem in a semigroup [10, 64] are both probabilistic and may fail with a small
likelihood. We also perform an analysis of the complexity and success probability
of these algorithms. Further, we use our algorithm to adapt the Pohlig-Hellman
algorithm to semigroups. The material in Section 2.2 is adapted from the paper
[102] co-authored by me.

Another endeavour in this chapter is to study the discrete logarithm problem in the
infinite polynomial semirings S6[x] and S20[x], from an experimental perspective.
These are infinite semigroups with non-torsion zero divisors, so in general, the dis-
crete logarithm problem does not have a straightforward formal solution, and the
algorithm mentioned above does not apply. However, we show with experiments
that the discrete logarithm problem has an easy heuristic solution in this case.

In the final section of the chapter, we describe the Semigroup Action Problem and
some observed limitations of the ideas in [34] for reductions extending the attack
methods of Pohlig and Hellman to semigroup actions. We argue that these methods
do not necessarily lead to a direct and effective attack protocol in the general case.

Some of the material in this chapter is adapted from the paper [102].

Chapter 3

In Chapter 3, we study the complexity of the conjuagacy search problem, which
has repeatedly been proposed as a one-way function, in some classes of non-abelian
platform groups.

The main contribution of this chapter gives a polynomial time reduction from the
conjugacy search problem to (a polynomial number of) discrete logarithm prob-
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lems, in two classes of groups: finite polycyclic groups with two generators, and
matrix groups over finite fields. This theory is used to cryptanalyse the systems
proposed in [41], [93], and [105]. We further introduce a concept called efficient
C-decomposability, which we show is sufficient for the CSP in a central product of
groups to reduce to individual CSP’s in the components. We use this concept to
demonstrate a polynomial time solution of the CSP in any extraspecial p-group.

Finally, this chapter also gives a broad overview of some of the platforms groups
and computational problems employed in non-abelian group-based cryptography,
some of the common protocols for key exchange and signatures, and the general and
specific methods of cryptanalysis. This part serves as a survey, and contains no new
results.

Some of the material in this chapter is adapted from the preprints [100, 101].

Chapter 4

In Chapter 4, we provide a full cryptanalysis of the key exchange system in [24],
which is based on a modified form of group algebras. This is done by providing a
classical polynomial time algebraic solution to the underlying algorithmic problem.
For this, we produce an algebraic reduction of the underlying problem to a set of
simultaneous equations over Fq involving circulant matrices. We show that in a
majority of cases, they can be solved by linear algebra in polynomial time.

We also provide an argument to show that our attack algorithm has a high success
rate, and verify this experimentally for the parameters proposed by the authors.
We also show that despite the use of a non-commutative structure, this algorithmic
problem is equivalent to a commutative semigroup action problem.

The material in this chapter has been adapted from the preprint [99].

Chapter 5

Chapter 5 focuses on devising structured, deterministic methods for producing col-
lisions in algebraic hash functions that may be seen as generalized forms of the
well-known Zémor and Tillich-Zémor hash functions.

For the generalized Zémor hash, we extend existing hash values in SL2(Fp) into
triangular or diagonal form by multiplying with products of the form Am

0 A
n
1 , where

A0 and A1 denote fixed generators of SL2(Fq). We also discuss the application of
this method to produce collisions, and the feasibility and efficiency thereof. Our
method thus provides an alternate deterministic approach to the method for finding
triangular hashes in [79].
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For generalized Tillich-Zémor hash functions over Fpk for p ̸= 2, we relate the
generator matrices to a polynomial recurrence relation, and accordingly provide
conditions for collisions. We also describe a method to maliciously design the system
so as to facilitate easy collisions, in terms of this polynomial recurrence relation.

On simplifying the general criteria, and through experiments, our general conclu-
sion is that it is very difficult in practice to achieve the theoretical collision condi-
tions efficiently, in both the generalized Zémor and the generalized Tillich-Zémor
cases. Therefore, although the techniques are interesting theoretically, in practice
the collision-resistance of the generalized Zémor functions is reinforced.

Closing It has been my humble strive that this project would add constructively
to the theoretical and practical knowledge in the budding area of algebraic cryptog-
raphy, and provide insight on future directions for research and implementation.
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Chapter 2

Discrete Logarithm Problem in
Various Algebraic Platforms

2.1 Introduction

Let G be a group and assume x, y ∈ G are two elements of the group. We refer to
x as the base element. The discrete logarithm problem (referred to henceforth as
DLP) asks for the computation of an integer m ∈ Z (assuming such integers exist)
such that xm = y. The DLP plays an important role in a multitude of algebraic
and number theoretic cryptographic systems. Its use was introduced in the Diffie-
Hellman protocol for public key exchange [27] and has since seen a tremendous
amount of development, generalisations and extensions [59].

Many modern-day systems for public key exchange use the discrete logarithm prob-
lem in a suitable group. The most commonly used groups have been the multiplica-
tive group of finite fields and the group of points on an elliptic curve. The DLP in
Jacobians of hyperelliptic curves and more general abelian varieties has also been
studied extensively [20]. In [60] and [32], the DLP over the matrix group GLn(Fq)
was studied and shown to be no more difficult than the DLP over a small extension
of Fq, and consequently less efficient in terms of key sizes for the same security level.

In this chapter, we express complexities using group/semigroup multiplications as
one fundamental step. Thus, an exponentiation xe is performed in O(log e) steps.
We will use the fact that for two lists of length n in which a match exists, a match
can be found in O(n log n) steps using standard sorting and searching algorithms
(for details, the interested reader may refer to [22]).

For a general finite group of order N , there exist algorithms that solve the DLP
in O(

√
N logN) steps. Such algorithms are said to produce a square root attack.

The most well-known examples are Shanks’ Baby Step-Giant Step algorithm [89]
and the Pollard-Rho algorithm [81]. Note that Shanks’ algorithm is a determinis-
tic algorithm having time complexity O(

√
N logN) and space complexity O(

√
N).

In contrast, Pollard’s algorithm is a probabilistic algorithm having time complex-
ity O(

√
N logN) group multiplications and space complexity O(1). If N is un-

known, a simple modification of these algorithms would achieve a time complexity
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of O(
√
N(logN)2).

Elliptic curve groups have been widely implemented in practice since for a carefully
selected elliptic curve group the best known classical algorithm for solving DLP has
running time O(

√
N logN), where N is the group order. This is in contrast to many

other finite groups such as the multiplicative group of a finite field and the group of
invertible matrices over a finite field where algorithms with subexponential running
time are known [2].

In cryptography, the Diffie-Hellman protocol using a finite group has been gener-
alized to situations where the underlying problem is a discrete logarithm problem
in a semigroup or even to situations where a semigroup acts on a set [49, 58]. The
interested reader will find more material in a recent survey by Goel et al. [36].

Summary of Contributions

This chapter studies the difficulty of solving the discrete logarithm problem in alge-
braic platforms that are different from groups.

The main contribution of this chapter, Section 2.2 is a deterministic algorithm for
computing the discrete logarithm of an element y in a semigroup S with respect
to some torsion base element x ∈ S. The time complexity of our algorithm is
O(
√
Nx(logNx)

2), where Nx is the order of x. This is the same as the time com-
plexity for the Pollard-rho and Baby Step-Giant Step algorithms in a group, where
the order Nx of the base element is unknown. The previously known algorithms for
the discrete logarithm problem in a semigroup [64], [10] are both probabilistic and
may fail with a small likelihood. We also perform an analysis of the complexity and
success probability of these algorithms. In this section we also use our algorithm to
adapt the Pohlig-Hellman algorithm to semigroups. The material in Section 2.2 is
adapted from the paper [102] co-authored by me.

In Section 2.3, we use an experimental lens to study the discrete logarithm problem
in the infinite polynomial semirings S6[x] and S20[x]. These are infinite semigroups
with zero divisors, so in general, the degree of a power of a polynomial cannot be cal-
culated formally. The elements are also non-torsion, so the algorithm in Section 2.2
does not apply. However, we show that the discrete logarithm problem has an easy
heuristic solution. Our experiments demonstrate that given a polynomial p and an
exponent e, the degree of the resulting polynomial q := pe lies within a small range
around the estimate ⌈(deg(q)/ deg(p))⌉.

In Section 2.4, we describe the Semigroup Action Problem, which was first proposed
as a generalization of the DLP in [58]. In [34], the authors define reductions which
may lead to a method of attacks on cryptosystems based on semigroup actions, by
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extending the attack methods of Pohlig and Hellman [80] for the DLP in groups.
We discuss some observed limitations of these ideas, and argue that these methods
do not necessarily lead to a direct and effective attack protocol in the most general
case.

2.2 The discrete logarithm problem

in a semigroup

A semigroup is a set of elements with an associative binary operation. Having
discussed groups, it is naturally interesting to ask whether the DLP also has a
square root attack in more generalized structures such as semigroups. Since the
best algorithms for the DLP all make use of the existence of inverses, it is unclear
whether they can be generalized to a semigroup. However, when a special type of
semigroup element, called a torsion element, is used as the base, it turns out that
the DLP is reducible in polynomial time to the DLP in a finite group.

A torsion element is one whose powers eventually repeat to form a cycle, and will
be defined more precisely in Section 2.2.1. This section also elaborates more on why
the standard collision-based algorithms are not directly adaptable to the semigroup
case. A semigroup in which every element is torsion is called a torsion semigroup.
The DLP in semigroups with a torsion base element, in a classical setting, was first
discussed by Chris Monico [64] in 2002, and later in a paper by Banin and Tsaban
[10] in 2016. While the discussion in the present chapter is entirely on classical algo-
rithms, it is also worth mentioning the paper [19], where the authors independently
provide a quantum algorithm that solves the DLP in a torsion semigroup.

Both the algorithm of Monico and the one of Banin and Tsaban are probabilistic
and might fail with low probability. Further, some of their methods are heuristic,
dependent on an oracle or some additional assumption, and their success rates and
expected number of steps are either conjectured or stated loosely. It is therefore of
interest to come up with an algorithm which deterministically computes the discrete
logarithm in a semigroup. In this regard we like to make some analogy to the problem
of determining if an integer is a prime number, a problem of great importance in
cryptography. Nowadays in practice the algorithm of Miller and Rabin [63, 83] has
been used for many years. Still it was a great result when Agrawal, Kayal and
Saxena [3] came up with a deterministic polynomial time algorithm to achieve this
goal.

A key step in finding the discrete logarithm in a semigroup is computing the cycle
length of an element. Both the algorithms of [10] and [64] rely on computing some
multiple of the cycle length, and then removing “extra” factors by taking gcd’s until
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the cycle length is obtained. Once the cycle length value is obtained, the discrete
logarithm may easily be computed with a few more simple steps. While Monico
does not provide further elaboration on how this is done, the paper by Banin and
Tsaban bridges this knowledge gap by showing how the problem is reduced to a
DLP in a group once the cycle length and start values are known.

Denote by Nx the order of x (formally defined in Definition 2.4). The complexity
of the algorithm in [10] is O(

√
Nx(logNx)

2 log logNx), and the complexity of the
one in [64] is O(

√
Nx(logNx)

2). While both of the existing methods seem to suc-
ceed with high probability for practical values, we show that the process of taking
successive gcd’s/factors is unnecessary, and that one can deterministically find the
cycle length. The main contribution of this paper will be a deterministic algorithm
for computing the discrete logarithm of an element y in some semigroup S with
respect to some torsion base element x ∈ S. The time complexity of our algorithm
is O(

√
Nx(logNx)

2).

2.2.1 Preliminaries

A semigroup S is a set together with an associative binary operation. Like in group
theory where a torsion group consists of elements of finite order only we define:

Definition 2.1 (Torsion Element). Let S be a semigroup. An element x ∈ S is
called a torsion element if the sub-semigroup ⟨x⟩ := {xk | k ∈ N} generated by x, is
finite. S is called a torsion semigroup if every x ∈ S is a torsion element.

Throughout the chapter the following definitions will be assumed:

Definition 2.2 (Cycle Start). Let x ∈ S. The cycle start sx of x is defined as the
smallest positive integer such that xsx = xb for some b ∈ N, b > sx.

Definition 2.3 (Cycle Length). Let x ∈ S. The cycle length Lx of x is defined
as the smallest positive integer such that xsx+Lx = xsx .

Definition 2.4 (Element order). Let x ∈ S. With notation as above, we define
the order Nx of x as the cardinality of the sub-semigroup ⟨x⟩. Note that Nx =
sx + Lx − 1.

Definition 2.5 (Semigroup DLP). Let S be a semigroup and x ∈ S. The semi-
group DLP is defined as follows. Given y ∈ ⟨x⟩ := {xk | k ∈ N}, find all m ∈ N
such that xm = y.

We state below a key result first proved in [10].

Lemma 2.1 ([10]). Let S be a semigroup and x ∈ S be an element with cycle start
sx. The set of powers Gx = {xsx+k | k ≥ 0} of x forms a finite cyclic group. The
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identity element of Gx is given by xtLx , where t is the minimum positive integer such
that xtLx ∈ Gx.

The following result is stated in [64] in a slightly different formulation. We provide
an equivalent proof based on the group structure of Gx.

Lemma 2.2 ([64]). Let x ∈ S have cycle start sx and cycle length Lx. For all
integers n,m ≥ sx, we have xm = xn ⇐⇒ n ≡ m (mod Lx).

Proof. We can assume without loss of generality that n ≥ m, and so we can write
n = m+ kLx+u, with k ≥ 0 and 0 ≤ u < Lx. First suppose that n ≡ m (mod Lx),
i.e. u = 0. Since m,n ≥ sx, we have xn = xm+kLx = xm.

Conversely, if xn = xm, write n1 = n− sx ≥ 0, and m1 = m− sx ≥ 0. We have

xsx+m1 = xsx+n1 = xsx+m1+kLx+u = xsx+m1+u.

Now, without loss of generality, m1 ≥ sx, because if not, one can always increment
m1 and n1 by multiples of Lx until this happens. So, we can assume that xm1 lies
in Gx and is thus invertible. We multiply by the inverse on both sides to finally get

xsx = xsx+u.

Thus, we must have u = 0 or n ≡ m (mod Lx), as required.

Remark 2.1. It becomes clear from the above discussion that the standard collision-
based algorithms for order and discrete log computations in a group do not adapt
directly to a general semigroup. Collision-based algorithms for the computation of
the order N of a group element x (for instance, see [95]) are based on the principle
that whenever N can be expressed in the form N = A−B for non-negative integers
A and B, the collision xA = xB always occurs. However, this principle does not
work in a semigroup, where there are two independent components of the order.
More specifically, for a semigroup element x with cycle length Lx and cycle start sx,
whenever Lx may be expressed in the form A − B for non-negative integers A and
B, the equality xA = xB holds if and only if A,B ≥ sx. As an example, consider
a semigroup element x with cycle length Lx = 12 and cycle start sx = 5. Then,
Lx = 15 − 3, but x15 ̸= x3. Thus without prior knowledge of the cycle start, the
semigroup order Nx or cycle length Lx cannot directly be found using the same
collision-based algorithms for groups.

Similarly, collision-based algorithms fail for discrete log computations in a semi-
group. As an example, consider a semigroup element x with cycle length Lx = 15
and cycle start sx = 10, and suppose that the discrete log of y = x5 is to be found.
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Then y ·x6 = x11 = x26 is obtained as a collision. However, unlike in the group case,
the conclusion y = x26−6 = x20 is wrong since x5 ̸= x20. This happens because even
though x is torsion and forms a cycle of powers, it is not invertible.

This concludes the prerequisite knowledge on torsion elements in semigroups. In the
next section, we study the existing probabalistic algorithms for cycle lengths, and
analyse their assumptions, working and complexities.

2.2.2 Existing Probabalistic Agorithms

Banin and Tsaban’s Algorithm

In this section, we study the probabalistic algorithm described in [10] for computing
the cycle length of a torsion element in a semigroup. While the authors of the
original paper describe their theory only for torsion semigroups, it will become clear
that the same discussion holds true for any semigroup when the base element chosen
is torsion.

Let S be a semigroup and x be a torsion element of S. Let sx denote the cy-
cle start of x and Lx its cycle length. Then, recall from Lemma 2.1 that Gx :=
{xsx , xsx+1, . . . , xsx+Lx−1} is a cyclic group, and that it has order Lx. The authors
of [10] assume the availability of a ‘Discrete Logarithm Oracle’ for the group Gx,
which returns values logx h for h ∈ Gx. They state that these values need not be
smaller than the group order but are polynomial in the size of Gx and the element
x. The representation of the identity in Gx is unknown, and a method to compute
inverses is not available.

The authors claim that the well-known algorithms for discrete logarithm compu-
tations in groups do not explicitly require inverses, or can easily be modified to
work without the use of inverses. While it is true that these algorithms make use
of mainly the existence of inverses rather than their explicit computation, we be-
lieve that the fact that easy modification is possible is not immediate without some
justification. In fact, it will become clear in the later sections that the modified
Baby-Step-Giant-Step algorithm devised by Monico [64] (and also the deterministic
algorithm presented in Section 2.2.3) is a crucial and non-trivial part of any such
modification.

We make the following observation from the proof of Lemma 1 found in [10]. For
any k ≥ 0, denote by vk the smallest positive integer such that

vkLx ≥ 2sx + k.

We then have xvkLx−sx−k ∈ Gx and

xsx+kxvkLx−sx−k = xvkLx = xtLx , (2.1)
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so the inverse of the element xsx+k of Gx is given by xvkLx−sx−k. In particular,
the computation of inverses requires prior knowledge of the cycle start and cycle
length. As will be explained below, the cycle start may be computed only once the
value of the cycle length is known, using a binary search. This explains why the
authors in [10] insist that their Discrete Logarithm Oracle does not need to use the
computation of inverses.

Below, we describe Algorithm 2.1, which is the algorithm suggested in [10] to com-
pute the order of the group Gx, i.e. the cycle length Lx of x.

Algorithm 2.1: Banin-Tsaban Algorithm for Cycle Length

Input A semigroup S and a torsion element x ∈ S; a DLP oracle for
finite cyclic groups
Output The cycle length Lx of x

1: Initialize i, j, g, Lx ← 1, N >> sx + Lx. Fix bounds r > 1, s > 1.
2: while j < s

1. Fix a random z ∈ {⌊N/2⌋, . . . , N} and set h = xz.
2. while i < r

(a) Choose a random number ki > 0.
(b) Use the DLP oracle to compute k′i = logh(h

ki).

(c) Set g ← gcd
j≤i

(kj − k′j) = gcd

(
gcd
j<i

(kj − k′j), ki − ki′
)
.

(d) Set i← i+ 1.
3. end while
4. Set Lx ← lcm(Lx, g), j ← j + 1.

6: end while
7: Return Lx.

We first note that the authors state complexities in terms of Lx, which are valid
when the bound N for Nx is known. If the algorithm fails for a value of N , the
authors suggest to double N and try again. In this case, which we will assume from
now on, we assert that the complexities need to be taken in terms of Nx instead of
Lx. The oracle may be assumed to have the standard complexity of O(

√
Nx logNx)

steps for discrete logarithm calculations.

Step (2.2.c) takes O(log(maxj≤i(kj − ki)) = O(logNx) integer operations by the
assumption on the oracle, which does not contribute to the total complexity. Thus,
the total complexity of Step (2.2) comes from the oracle alone, and isO(

√
Nx logNx).

Now, the authors of [10] remark that r and s can be taken to satisfy r = O(1) and
s = O(log logNx). Thus, the total complexity is O(logNx) times the complexity of
Algorithm 2.1, and thus O(log log(Nx) logNx) times the complexity of Step (2.2).
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Therefore, we get the total complexity of O(log logNx(logNx)
2
√
Nx).

Finally, in Algorithm 2.2, we present the application of the binary search method to
find the cycle start once Lx is known. This algorithm is formulated as below for this
purpose in [10], though the idea to use a binary search is also originally mentioned
in [64].

Algorithm 2.2: Calculating Cycle Start (Binary Search)

Input A semigroup element x with cycle length Lx

Output Cycle start sx of x
1: Initialize sx ← 1
2: while xsx+Lx ̸= xsx do

sx ← 2sx
3: end while
4: Set a← sx/2
5: while |a− sx| ≥ 2
c← (a+ sx)/2
if xc+Lx ̸= xc then
a← c

else
sx ← c

6: end while

Lemma 2.3. Let Nx be the order of the element x. Then Algorithm 2.2 requires

O
(
(logNx)

2
)
.

steps.

Proof. Each of Steps (2) and (5) involves O(logNx) rounds, each of which com-
putes requires O(logNx) semigroup multiplications and one comparison. The total
complexity is thus O ((logNx)

2).

Monico’s Algorithm

In his PhD thesis [64], Chris Monico provides a probabilistic algorithm (described
below as Algorithm 2.3) that calculates the cycle length of an element in a finite ring
of order N . This algorithm makes use of the multiplicative semigroup structure of
the finite ring, and of the availability of the explicit bound N for every cycle length,
and is in fact applicable to any semigroup where such a bound N is available. In this
subsection, we analyse this algorithm, provide a more concrete bound on its success
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rate, and compute its complexity in terms of N . We will discuss this algorithm in
terms of torsion semigroups, as opposed to finite rings.

Algorithm 2.3: Monico’s Baby-Step Giant-Step for Cycle Length

Input A finite semigroup S with |S| = N and an element x ∈ S
Output The cycle length Lx of x

1: Set m = ⌈
√
N⌉. Choose a prime q > N .

2: For 0 ≤ i ≤ m, compute and store in a table the pairs (i;xq+im).
Sort the table by the second component.

3: Find the least positive integer b1 such that xq+b1 is in the table:
xq+b1 = xq+a1m. (Note: 0 < b1 < m).

4: Find the least positive integer b2 such that x2q+b2 is in the table:
x2q+b2 = xq+a2m. (Again, 0 < b2 < m).

5: Compute g = gcd(a1m− b1, a2m− b2 − q).
6: For each divisor d of g below some bound B, do the following.

If xN+g/d = xN :
set g ← g/d;

7: Output Lx = g and stop.

We first note that if Lx > m and the table in Step (2) has repeated entries xq+i1m =
xq+i2m, then numbers b1 and b2 may not exist below m. In this case the algorithm
needs to be modified to take g ← (i1 − i2)m. However, whenever this case does not
arise, it can be shown that steps 3 and 4 are always successful in finding a collision.

We further remark that in Step (6), the list of divisors of g is kept fixed, while
g is updated to g/d whenever the condition is satisfied. In the subsequent steps,
non-divisors of g/d can be immediately discarded. However, the end result depends
on the order in which divisors are tested, which the algorithm does not mention
explicitly. However, we note that it is, in fact, possible to restrict the testing to
only the prime power divisors of g below B, and with this setting, the optimal
performance is obtained by taking divisors in decreasing order. We will assume this
set-up for the rest of the analysis. For completeness, we restate Algorithm 2.3 with
the above clarifications in Algorithm 2.4.

Note that Step (2) involves O(logN) multiplications to compute xq and another
O(
√
N) multiplications to compute xq, xq · xm, xq · x2m, . . . , xq · xm2

. Step 3 involves
at mostmmultiplications xq+1 = xq ·x, xq+1·x, . . . , xq+m−1, with complexityO(

√
N),

and match-finding with the first list, with complexity O(
√
N logN) with standard

sorting and search algorithms. The same is true for Step (4). Step (5) has complexity
O(logmax(a1m − b1, a2m − b2 − q)) = O(logN) and so does not contribute to
the overall complexity. Step (6) involves B iterations of a multiplication and an
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Algorithm 2.4: Restated: Monico’s Baby-Step Giant-Step for Cycle
Length

Input A finite semigroup S with |S| = N and an element x ∈ S
Output The cycle length Lx of x

1: Set m = ⌈
√
N⌉. Choose a prime q > N .

2: For 0 ≤ i ≤ m, compute and store in a table the pairs (i;xq+im).
Sort the table by the second component. If a collision xq+i1m = xq+i2m

occurs, set g = (i1 − i2)m and go to Step (6).
3: Find the least positive integer b1 such that xq+b1 is in the table:
xq+b1 = xq+a1m. (Note: 0 < b1 < m).

4: Find the least positive integer b2 such that x2q+b2 is in the table:
x2q+b2 = xq+a2m. (Again, 0 < b2 < m).

5: Compute g = gcd(a1m− b1, a2m− b2 − q).
6: Fix a bound B and compute all the divisors of g below B. Denote these by
d1 > d2 > . . . > dr.

7: For i = 1, . . . , r, do the following.
If xN+g/di = xN :
set g ← g/di;

8: Output Lx = g and stop.

exponentiation xg/d, and thus has a time complexity ofO(B(log g+1)) = O(B logN)
multiplications.

In the original work, Monico states that the bound B of Algorithm 2.3 can always
be chosen so that B <

√
a1m− b1. We remark that this claim does not hold in the

current setting of the algorithm. For example, with a cycle length value of 4, and
a1m− b1 = 104, a2m− b2− q = 52, we get g = 52. If B <

√
a1m− b1 =

√
104 < 11,

then we would only test divisors d below 11, and would never factor out 13 to obtain
the true cycle length. For such a bound to work, one needs to modify the algorithm
to test both divisors d and g/d in Step (6). However, we will show in Lemma 2.4 that
it is almost always sufficient to take B to be a reasonably large fixed constant, thus
the complexity of Step (6) can be counted as O(logN), and does not contribute
to the overall complexity. Thus, the overall time complexity is O(

√
N logN). If

N is unavailable, the algorithm can also be modified to update the value of N by
doubling at each step until a large enough value is found. In this case, Algorithm 2.3
has a total complexity of O(

√
Nx(logNx)

2).

Further, Monico suggests a modification to the above algorithm, viz. to find several
such ai and bi and compute all the gcd’s. It is clear that this suggestion is exactly
the method used in Banin and Tsaban’s algorithm as discussed above.
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We now analyse the probability of success. The algorithm first looks for a collisions
of the form xq+a1m = xq+b1 . The working principle is that in this case, the cycle
length Lx divides a1m − b1. Similarly, if also xq+a2m = x2q+b2 then g = gcd(a1m −
b1, a2m− b2 − q) is a multiple of Lx.

So far, the process is essentially the same in both Algorithms 2.1 and 2.3: while the
former uses a discrete logarithm oracle to obtain multiples of the cycle length, the
latter directly finds these multiples by finding collisions. However, in Algorithm 2.3,
we do not proceed with computing multiple factors of Lx, but work with the fixed
multiple g of Lx, whereas in Algorithm 2.1 this multiple shrinks several times.

Algorithm 2.3 then proceeds by fixing a bound B and iterating over every number d
below B to check if d | g. If yes, it executes the next part, i.e. checks if xN+g/d = xN ,
and if this holds, it sets g ← g/d. Note that if the factorization of the number g is
known (or if g can be factored in time negligible compared to O(

√
N), then we do

not need this fixed bound B, and can instead iterate over every prime factor d of g.
It is well-known that the number of prime factors of g counted with multiplicity is
O(log g), so Step (5) of the algorithm can find Lx in O(logN) steps. However, in
general, factoring g may be difficult, so we assume from here on that the algorithm
proceeds by fixing a bound B for the divisors of g. Below we analyse the probability
of the algorithm succeeding in terms of B and g.

Lemma 2.4. The probability that Algorithm 2.4 succeeds is bounded below by(
1− 1

B

)log g
where g is defined in Step 5 of Algorithm 2.4.

Proof. We write g = Lx · F for some number F and suppose that the algorithm
fails. This means that there is a divisor, and hence also a prime power divisor of F ,
which the algorithm fails to factor out. Let p be a prime dividing F , αp denote its
largest power dividing F , and βp be its largest power below the fixed bound B. So,
we have pαp | F , pαp+1 ∤ F , pβp ≤ B, pβp+1 > B.

Note that the number of times the algorithm divides g by p is

βp∑
i=1

i = βp · (βp + 1)/2.

Since divisors are taken in decreasing order, we must have βp · (βp + 1)/2 < αp if
the algorithm fails. So, the algorithm succeeds as long as βp · (βp + 1)/2 ≥ αp for
every prime divisor p of F . Thus, the probability of success for the algorithm can
be bounded below by ∏

p|g

Prob

(
βp · (βp + 1)

2
≥ αp

)
.

31



Chapter 2
Discrete Logarithm Problem in

Various Algebraic Platforms

Write vp = βp(βp+1)

2
for simplicity. We may assume that g is a random multiple of

Lx below the bound B, so F is a random number in
{
1, . . . , B

Lx

}
. We have,

Prob(αp ≤ vp) =1− Prob(pvp+1 | F )

=1−
(

B/Lx

pvp+1(B/Lx)

)
=1− 1/pvp+1 = 1− 1

p
βp(βp+1)

2
+1
.

Hence, a lower bound for the probability of the algorithm’s success is∏
p|F

(
1− 1

p
βp·(βp+1)

2
+1

)
.

Now, we have,

pβp+1 > B ⇐⇒ 1

pβp+1
<

1

B

=⇒ 1− 1

p
βp(βp+1)

2
+1

> 1− 1

B
βp
2 p

> 1− 1

B
,

where the last inequality follows from the following argument. If βp ≥ 2, then it
clearly holds. If βp = 0, this means by definition that p > B, and so again, the
inequality holds. Finally, if βp = 1, then p ≤ B and p2 > B, or p > B1/2, and so

B1/2p > B. Thus, in every case, one has 1− 1

Bβp/2p
> 1− 1

B
.

We further make the following observation. Let ω(n) denote the number of distinct
prime divisors of integer n (note, however, that the same statement also holds if
counted with multiplicity). Then clearly, 2ω(n) ≤ n, and so, taking logarithms,
ω(n) ≤ log2 n.

Collecting all the above results, we conclude that the probability of success Prob
(success) of Algorithm 2.3 is bounded below as follows.

Prob (success) ≥
∏
p|F

(
1− 1

B

)

=

(
1− 1

B

)ω(F )

≥
(
1− 1

B

)logF

≥
(
1− 1

B

)log g

.
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Note that this bound shows that Algorithm 2.3 is indeed successful with overwhelm-
ing probability, as conjectured by the author. For example, with B = 106, even
when g is several orders of magnitude larger than B, say g = 24000, the probability
of success is greater than 99.6 percent, by the bound derived in Lemma 2.4.

2.2.3 Deterministic Solution of the DLP

The solution of the DLP in a semigroup involves two parts: the calculation of the
cycle length Lx and cycle start sx of the base element x. These values are needed
to find the discrete log.

Deterministic Algorithm for Cycle Length Computation

We now present our deterministic algorithm for the computation of the cycle length.
It works by finding a suitable collision, and also guarantees finding the actual cycle
length rather than just a multiple of it, in a fixed number of steps.

Algorithm 2.5: Deterministic Algorithm for Cycle Length

Input A semigroup S and a torsion element x ∈ S.
Output Cycle length Lx of x

1: Initialize N ← 1.
2: Set q ← ⌈

√
N⌉.

3: Compute, one by one, xN , xN+1, . . . , xN+q and check for the equality
xN = xN+j at each step j ≥ 1. Store these values in a table as pairs
(N + j, xN+j), 0 ≤ j < q. If xN = xN+j for any j < q, then set Lx ← j and
end the process. If not, proceed to the next step.

4: For 0 ≤ i ≤ q, compute, one by one, the values xN+q, xN+2q, . . . , xN+iq and
at each step i, look for a match in the table of values calculated in Step (3).

5: Suppose that a match xN+iq = xN+j is found, and i is the smallest integer
such that this happens. Set Lx ← iq − j and end the process.

6: If no match is found in steps 3 or 5, set N ← 2 ·N and go back to Step (2).

Theorem 2.1. Let S be a semigroup and x ∈ S a torsion element with order Nx.
If an upper bound on Nx is known, Algorithm 2.5 returns the correct value of the
cycle length Lx with

O
(√

Nx · (logNx)
2
)

steps. The total space complexity is O
(√

Nx

)
semigroup elements.

Proof. We first assume N ≥ max(Lx, sx) and show that Steps (1-5) succeed in
finding Lx. We have q = ⌈

√
N⌉. If Lx < q, then the equality xN = xN+Lx is found
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in the first step and the statement of the theorem follows. Else if Lx ≥ q, we can
write uniquely

Lx = iq − j,

for some positive integers i > 0, 0 ≤ j < q. Now, we must have i ≤ q, because
otherwise if i ≥ q + 1, we would have

Lx ≥ (q + 1)q − j > q2 + q − q = q2 ≥ N,

a contradiction.

We have

Lx = iq − j, 0 < i ≤ q, 0 ≤ j < q

=⇒ N + j + Lx = N + iq

=⇒ xN+j = xN+j+Lx = xN+iq,

where the last step follows because N > sx by assumption. So, such a collision
always occurs between elements of the two lists in the algorithm.

We now claim that for the smallest such integer i computed in Step (5) of Algorithm
2.5, Lx = iq − j. To see this, let i be the smallest positive integer such that

xN+j = xN+iq.

Also let Lx = i′q − j′, 0 < i′ ≤ q, 0 ≤ j′ < q. We have already shown above that
such integers i′ and j′ exist for our choice of N . By the definition of Lx, we must
have Lx | iq − j. Now suppose that i′ > i. Then,

i′q − j′ ≥(i+ 1)q − j′

=iq + (q − j′) > iq

≥iq − j.

But, Lx = i′q− j′ | iq− j, so we must have iq− j = i′q− j′. Since i′ > i, this means
that

q ≤ (i′ − i)q = (j′ − j) < j′,

which is a contradiction because 0 ≤ j′ < q. So, we must have i′ = i, j′ = j. This
proves the claim.

We have shown above that the algorithm finds the correct cycle length when N >
max(sx, Lx). Since the algorithm doubles the value of N until a match is found, it
always terminates and outputs the correct cycle length. We now look at the time
complexity.
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For a given N , Step (2) involves one exponentiation, or O(logN) multiplications to
find xN and then at most another q = O(

√
N) multiplications and equality checks for

xN ·x, xN ·x2, . . . , xN ·xq. This step also needs a storage space of at most q = O(
√
N)

elements. Step 5 needs one exponentiation or O(logN) multiplications to find xq,
and then another q = O(

√
N) multiplications to find xN+q ·xq, xN+q ·x2q . . . , xN+q2 .

Finding matches in Steps (3) and (5) can be done in O(q log q) = O(
√
N log

√
N)

comparisons with the use of sorting and efficient look-up methods. Thus, clearly,
steps 1 to 5 in algorithm 2.5 have a total complexity of O(

√
N logN).

Moreover, the algorithm starts at N = 1 and doubles N until the cycle length is
found, i.e. until N > max(sx, Lx). Thus, the number of times steps 2 to 5 are
performed is

⌈log (max (Lx, sx))⌉ = O (max (log (Lx) , log(sx))) = O(logNx).

Thus, the total number of steps involved is

O
(√

Nx · (logNx)
2
)
.

Clearly, Step (3) involves the storage of q = ⌈
√
N⌉ = O

(√
max(sx, Lx)

)
= O

(√
Nx

)
elements, so this value gives the total space complexity. This completes the proof.

Remark 2.2. If a bound N on the order Nx is known a priori, then Algorithm 2.5

can clearly be completed in a single round, with time complexity O
(√

N · (logN)
)
.

Remark 2.3. For the case of a group, there exist better algorithms for the compu-
tation of the order of an element even when the total group order is unbounded.
For instance, Algorithm 3.3 in [95] uses a growth function d(t), which generalizes
the square root function used above, to compute the order N of a group element

x, and achieves time and space complexities of O
(√

N
)
, thus eliminating the ad-

ditional logN multiplier introduced by the method in Algorithm 2.5. Under this
method, one has functions g(t) and b(t) of the stage t, which dynamically replace
the constants N and q, respectively.

However, this method fails when used for a general semigroup due to the pres-
ence of two independent unknown components of the order. To see this, note
that the algorithm would need to be modified for a semigroup as follows. At
stage t, one has g(t − 1) ≤ Nx < g(t). On the completion of the baby steps,
one has a table with the powers xg(t), xg(t)+1, . . . , xg(t)+b(t) (the addition of g(t) is
necessary in the semigroup case to ensure that the loop is entered). The giant
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steps compute xg(t)+g(t−1)+b(t), xg(t)+g(t−1)+2·b(t), . . . , xg(t)+g(t−1)+d(t)·b(t) = x2g(t). Now,
while Nx is guaranteed to have a unique expression as g(t − 1) + ib(t) − j with
0 < i ≤ d(t) and 0 ≤ j ≤ b(t), this does not necessarily lead to a collision. In fact, if
b(t) < Lx < g(t−1) and 2Lx > g(t) = g(t−1)+d(t)·b(t), then neither the baby steps
nor the giant steps leads to a collision, and the cycle length is never found (note that
this can happen only if Lx > sx). Moreover, if a collision xg(t)+g(t−1)+ib(t) = xg(t)+j

is obtained in the giant step phase, the only conclusion that can be drawn is that
Lx | g(t− 1) + ib(t)− j. If instead we forced the condition g(t− 1) ≤ Nx < g(t), a
collision again may never occur because there is no control on the cycle start (For
instance, in matrix semigroups over finite simple semirings, the cycle start is often
found to be much larger than the cycle length. In such cases, adapting group-based
algorithms would fail). See Remark 2.1 for further details.

Experimental Results for Cycle Length Computations We used Algorithm
2.5 to compute cycle length values in several common semigroups, such as matrix
semigroups over finite fields, matrix semigroups over the finite simple semiring S20

(see [110] for a construction and [58] for the addition and multiplication tables),
and the symmetric and alternating groups (where the cycle length is precisely the
order of the element). We further used the obtained cycle lengths to compute
the cycle start values using Algorithm 2.2. The working code may be found at
https://github.com/simran-tinani/semigroup-cycle-length.

Solving the DLP once the Cycle Length is known

In this section, we demonstrate the solution of the DLP for a torsion element x in
the semigroup S once the cycle length is known. As before let Nx be the order of
the sub-semigroup ⟨x⟩, let Lx be the cycle length of the torsion element x (which
we assume is already computed) and let y ∈ ⟨x⟩ be an element.

In [10], the authors demonstrate the next steps in solving for logx(y), via a reduction
to a DLP in the group Gx, once Lx and sx are known. The procedure is described in
Algorithm 2.6 below, which has been adapted from the original formulation in [10].

Since authors of [10] do not give an explicit proof of correctness Step 5 in Algorithm
2.6, we provide it in Theorem 2.2. Before this, we will need the following technical
result.

Lemma 2.5. Let Lx be the cycle length of x ∈ S, and n, a, and a′ be fixed positive
integers. Suppose that xbLx+n = xa ∈ Gx, where b is the minimum number such
that xbLx+n ∈ Gx, and x

n−cLx = xa
′ ∈ Gx, where c the maximum number such that

xn−cLx ∈ Gx. Then

bLx + n ≤ a, and n− cLx ≤ a′.
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Algorithm 2.6: Algorithm for Discrete Logarithm

Input A semigroup S, a torsion element x ∈ S, with cycle length Lx and
cycle start sx, and y ∈ S with y = xm.
Output The discrete logarithm m of y with base x.

1: Compute t =
⌈

sx
Lx

⌉
and define x′ = xtLx+1 ∈ Gx.

2: Find the minimum number 0 ≤ b ≤ t such that y′ = y · xbLx ∈ Gx using
binary search.

3: Use Shanks’ Baby-Step Giant-Step algorithm for the group ⟨x′⟩ ⊆ Gx to

compute m′ ∈ {0, 1, . . . , Lx − 1} such that (x′)m
′
= y′.

4: Find the maximum number c ≥ 0 such that x(tLx+1)m′−cLx ∈ Gx using binary
search.

5: Return m = m′(tLx + 1)− (b+ c)Lx.

Proof. First let xbLx+n = xa with b minimal such that xbLx+n ∈ Gx. Suppose, to the
contrary, that bLx + n > a. We must have, by the minimality of b, x(b−1)Lx+n ̸∈ Gx,
so (b− 1)Lx + n < a.

But, xbLx+n = xa ∈ Gx

=⇒ bLx + n− a = kLx, k ≥ 1

=⇒ (b− k)Lx + n = a

=⇒ x(b−k)Lx+n = xa ∈ Gx, k ≥ 1.

This is a contradiction to the minimality of b. So, bLx + n ≤ a. Now suppose that
xn−cLx = xa ∈ Gx, with c maximal, and suppose that n − cLx > a′. We argue as
above:

Lx | n− cLx − a′

=⇒ n− (k + c)Lx = a′, for some k ≥ 1

=⇒ xn−(k+c)Lx = xa
′ ∈ Gx,

which is a contradiction to the maximality of c. Thus n− cLx ≤ a′.

Theorem 2.2. Let S be a semigroup, x ∈ S a torsion element and y ∈ ⟨x⟩ any
element. Assume the cycle length Lx and cycle start sx of x are known. Then
Algorithm 2.6 returns the correct values of the discrete logarithm m = logx(y) in
O
(√

Lx + (logNx)
2
)
semigroup multiplications, with a required storage of O

(√
Lx

)
semigroup elements.
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Proof. We use the notations of Algorithm 2.6, and also write n = logx y. We will
show that the output m is equal to the correct discrete logarithm value n. Recall
that we have a group Gx, generated by x′ := xtLx+1, and with identity xtLx . The

parameter t is given by the formula t =
⌈

sx
Lx

⌉
. Inverses in Gx can be computed in

polynomial time using the formula (2.1).Note that membership in Gx can be tested
with one equality check: y ∈ Gx ⇐⇒ y · xLx = y. There are now two cases:

1. When y ∈ Gx, we have b = 0. Here, it is possible to use Shanks’ Baby
Step-Giant Step algorithm [89] which is a deterministic algorithm and which
requires O

(√
Lx

)
semigroup multiplications and storage space O

(√
Lx

)
, in

order to compute logx′(y). This is done in Step (3). From this value, n =
logx(y) is readily computed, as shown below. Note that in this case, logx(y) is
determined modulo Lx.

2. When y ̸∈ Gx, Algorithm 2.6 first computes, using binary search, the smallest
power b of xLx such that the product y · xbLx lies in the group Gx, and then
proceeds as in case 1 via the Baby Step-Giant Step algorithm to find the
discrete logarithm m′ of y · xbLx with base x′ (i.e. (x′)m

′
= y · xbLx). Note

that in this case, the value of logx(y) is less than sx, and is thus determined
uniquely in N. Again, the time and space complexity are both O

(√
Lx

)
.

In both cases above, we have the maximal value c such that xm
′(tLx+1)−cLx ∈ Gx, and

so c ≤ Lx+ sx+1 = Nx+1, since m′ ≤ Lx and tLx ≤ Lx+ sx. We also clearly have
b ≤ t ≤ Nx. Since the computations of both b and c are done via binary searches,
they contribute O((logNx)

2) steps to the overall time complexity. Now,

xm
′(tLx+1)−cLx = xm

′(tLx+1) = (x′)m
′
= xbLx+n.

Applying Lemma 2.5 to the above equation, we must have

m′(tLx + 1)− cLx ≤ bLx + n, and bLx + n ≤ m′(tLx + 1)− cLx.

Therefore, bLx + n = m′(tLx + 1)− cLx, or n = m′(tLx + 1)− (b+ c)Lx, which is
precisely equal to m, the value returned by the Algorithm 2.6. Thus, m = n. This
completes the proof.

Combining Theorem 2.1, Lemma 2.3 and Theorem 2.2 we arrive at the main propo-
sition of the paper:

Proposition 2.1. Let S be a semigroup, x ∈ S a torsion element and y ∈ ⟨x⟩ any
element. The discrete logarithm m = logx(y) can be computed deterministically in

O
(√

Nx · (logNx)
2
)

steps, with a required storage of O
(√

Nx

)
semigroup elements.
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Proof. For the solution, one begins by finding Lx. This can be done using Algorithm
2.5 and according to Theorem 2.1 this requires O

(√
Nx · (logNx)

2
)
steps and the

storage of O
(√

Nx

)
elements.

By Lemma 2.3 the computation of the cycle start sx is achieved in O((logNx)
2)

semigroup multiplications, which does not contribute to the overall cost of the al-
gorithm.

By Theorem 2.2, the discrete logarithm m can then be retrieved using Algorithm
2.6, in O

(
(logNx)

2 +
√
Lx

)
steps, with a required storage of O

(√
Lx

)
semigroup

elements.

As Lx ≤ Nx, the overall complexity is dominated by the computation of the cycle
length, and the proof of the result is now clear.

Solving the DLP once the Factorization of the Cycle Length is known

We mentioned in the introduction that for a general group of order N the best
general known algorithms for solving the discrete logarithm problem have complexity
O(
√
N) operations.

In case the order N has a prime factorization into small primes there is the famous
Pohlig–Hellman algorithm [80] for solving the DLP whose complexity is dominated
by the largest prime factor in the integer factorization of N .

In case that we have available the integer factorization of the cycle length Lx we
can adapt the Pohlig–Hellman algorithm for groups to a Pohlig–Hellman algorithm
for solving the DLP in a semigroup. Algorithm 2.7 represents this adapted Pohlig–
Hellman algorithm.

Theorem 2.3. Let S be a semigroup, x ∈ S a torsion element and y ∈ ⟨x⟩ any ele-
ment. Assume the cycle start sx of x is known and assume the integer factorization
of the cycle length Lx is known to be Lx =

∏r
i=1 p

ei
i . Then Algorithm 2.7 com-

putes the discrete logarithm logx y requiring O
(

r∑
i=1

ei
(
logLx +

√
pi
)
+ (logNx)

2

)
steps. The space complexity of the algorithm consists in O

(
r∑

i=1

ei
√
pi

)
semigroup

elements.

Proof. Steps 1 and 2 are in analogy to the corresponding steps of Algorithm 2.6.
Steps 3 to 5 represent the Pohlig–Hellman algorithm for groups with the implied
complexity dominated by the largest prime factor pi of the integer factorization of
Lx (for a reference on Pohlig–Hellman in groups, see in [45, Theorem 2.32]). It
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Algorithm 2.7: Pohlig–Hellman Algorithm for solving the Discrete Loga-
rithm Problem in a Semigroup

Input A semigroup S, a torsion element x ∈ S, with cycle length
Lx =

∏r
i=1 p

ei
i and cycle start sx, and y ∈ S with y = xm

Output The discrete logarithm m of y with base x

1: Compute t =
⌈

sx
Lx

⌉
and define x′ = xtLx+1 ∈ Gx.

2: Find the minimum number 0 ≤ b ≤ t such that y′ = y · xbLx ∈ Gx using binary
search.

3: for i ∈ {1, . . . , r}
1. Compute the values x′i := (x′)Lx/p

ei
i , y′i := (y′)Lx/p

ei
i , and γi := (x′i)

pei−1
.

2. Calculate the inverse zi of xi
′ in Gx using (2.1).

3. Set k ← 0 and n0 ← 0.
4. while k < ei do

(a) Compute y′k = (y′iz
nk
i )p

ei−1−k ∈ ⟨γi⟩.
(b) Use Shanks’ Baby-Step Giant-Step algorithm for the group
⟨γi⟩ ⊆ Gx to compute dk ∈ {0, 1, . . . , pi − 1}
such that γi

dk = yk
′.

(c) Set nk+1 ← nk + pki dk, and k ← k + 1.
5. end while
6. Set mi := nei .

4: end for
5: Use the Chinese Remainder Theorem to solve the congruence equations

m′ ≡ mi (mod peii ), ∀ i ∈ {1, . . . , r}

uniquely for m′ (mod Lx). This gives the discrete logarithm of y′ with respect
to the base x′ in the group Gx.

6: Find the maximum number c ≥ 0 such that x(tLx+1)m′−cLx ∈ Gx using binary
search.

7: Return m = m′(tLx + 1)− (b+ c)Lx.
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follows that the running time of the algorithm is O
(

r∑
i=1

ei
(
logLx +

√
pi
))

steps.

The computation of b and c require in addition (logNx)
2 steps. The total space

complexity is O
(

r∑
i=1

ei
√
pi

)
semigroup elements and that completes the proof.

2.3 DLP in an infinite polynomial semiring

In general when considering polynomials in cryptography, one considers finite poly-
nomial rings obtained by quotienting polynomial rings by an irreducible polynomial
(for example, finite fields). In this section, we explore exponentiation, and subse-
quently, the complexity of the DLP in an infinite polynomial semiring. First observe
that if R is an integral domain, then the DLP in the ring R[x] is trivially solved by
simply dividing the degrees of the two given polynomials to obtain the exponent.
However, in the case where R is not an integral domain, and particularly, if R is not
a ring but a semiring, the degree of f(x)n is not necessarily equal to deg(f(x)) · n.

We will consider two finite semirings S6 and S20, which were found and described
in [110]. Both S6 and S20 are finite simple semirings, and up to isomorphism the
unique simple semirings with respectively 6 and 20 elements. The addition and
multiplication tables of these can be found below in Tables 2.1, 2.2.a and 2.2.b.

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 1 1 1 1 5
2 2 1 2 1 2 5
3 3 1 1 3 3 5
4 4 1 2 3 4 5
5 5 5 5 5 5 5

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 2 0 0 5
3 0 3 4 3 4 3
4 0 4 4 0 0 3
5 0 5 2 5 2 5

Table 2.1: Arithmetic in S6

With computational experiments, we investigated the statistical properties of ex-
ponentiation in the polynomial rings S6[x] and S20[x]. For this, we manually pro-
grammed the addition and multiplication tables, defined the corresponding poly-
nomial semirings, and implemented polynomial exponentiation through square and
multiply. Further, we used a function to generate random polynomials over the
semiring, calculate their degrees, exponentiate by random integer, and then com-
pared the degrees of the original and resulting polynomials. Some selected results
can be found in table 2.3.
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+ 0 a b c d e f g h i j k ℓ m n o p q r 1
0 0 a b c d e f g h i j k ℓ m n o p q r 1
a a a b c d e f g h i j k ℓ m n o p q r 1
b b b b c e e f g h i k k ℓ m n o p q r 1
c c c c c f f f h h i ℓ ℓ ℓ 1 n p p q r 1
d d d e f d e f g h i j k ℓ m n o p q r 1
e e e e f e e f g h i k k ℓ m n o p q r 1
f f f f f f f f h h i ℓ ℓ ℓ 1 n p p q r 1
g g g g h g g h g h i m m 1 m n o p q r 1
h h h h h h h h h h i 1 1 1 1 n p p q r 1
i i i i i i i i i i i n n n n n q q q r n
j j j k ℓ j k ℓ m 1 n j k ℓ m n o p q r 1
k k k k ℓ k k ℓ m 1 n k k ℓ m n o p q r 1
ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ 1 1 n ℓ ℓ ℓ 1 n p p q r 1
m m m m 1 m m 1 m 1 n m m 1 m n o p q r 1
n n n n n n n n n n n n n n n n q q q r n
o o o o p o o p o p q o o p o q o p q r p
p p p p p p p p p p q p p p p q p p q r p
q q q q q q q q q q q q q q q q q q q r q
r r r r r r r r r r r r r r r r r r r r r
1 1 1 1 1 1 1 1 1 1 n 1 1 1 1 n p p q r 1

Table 2.2.a: Addition in S20
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· 0 a b c d e f g h i j k ℓ m n o p q r 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0 0 0 a a a a a b b b c a
b 0 0 0 0 a a a b b c a a a b c b b c c b
c 0 a b c a b c b c c a b c b c b c c c c
d 0 0 0 0 0 0 0 0 0 0 d d d d d g g g i d
e 0 0 0 0 a a a b b c d d d e f g g h i e
f 0 a b c a b c b c c d e f e f g h h i f
g 0 0 0 0 d d d g g i d d d g i g g i i g
h 0 a b c d e f g h i d e f g i g h i i h
i 0 d g i d g i g i i d g i g i g i i i i
j 0 0 0 0 0 0 0 0 0 0 j j j j j o o o r j
k 0 0 0 0 a a a b b c j j j k ℓ o o p r k
ℓ 0 a b c a b c b c c j k ℓ k ℓ o p p r l
m 0 0 0 0 d d d g g i j j j m n o o q r m
n 0 d g i d g i g i i j m n m n o q q r n
o 0 0 0 0 j j j o o r j j j o r o o r r o
p 0 a b c j k ℓ o p r j k ℓ o r o p r r p
q 0 d g i j m n o q r j m n o r o q r r q
r 0 j o r j o r o r r j o r o r o r r r r
1 0 a b c d e f g h i j k ℓ m n o p q r 1

Table 2.2.b: Multiplication in S20
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As expected, given a polynomial p and an exponent e, the degree of the resulting
polynomial q := pe was, in all cases, smaller than the quantity deg(p) · e. We also
computed the value of ⌈(deg(q)/ deg(p))⌉, which is the best average guess for the
value of e if the semiring is considered to not have many zero divisors.

For many instances in S6[x], this guess actually matched the value of e, and for
all instances, the difference was a very small quantity. In S6[x], for most instances,
⌈(deg(q)/ deg(p))⌉ was different from the true value of the exponent e. However, the
maximum difference between these two quantities still stays very small. Thus, in
both cases an adversary only has to try a very small number of possible exponents
in order to solve the DLP.

deg p e deg q := pe deg p · e
⌈
deg q
deg p

⌉
59 83 4815 4897 82
40 14 547 560 14
43 17 715 731 17
80 29 2292 2320 29
67 62 4093 4154 62
39 69 2623 2691 68
75 42 3109 3150 42
22 62 1303 1364 60
23 53 1167 1219 51
84 93 7720 7812 92
83 97 7955 8051 96
9 9 73 81 9
91 62 5581 5642 62
96 90 8551 8640 90
29 98 2745 2842 95
55 6 325 330 6
35 59 2007 2065 59
17 13 209 221 13
39 15 571 585 15
96 28 2661 2688 28

deg p e deg q := pe deg p · e
⌈
deg q
deg p

⌉
14 82 1067 1148 77
17 36 577 612 34
10 71 640 710 64
8 58 407 464 51
20 70 1331 1400 67
16 36 541 576 34
11 34 341 374 31
19 31 559 589 30
61 22 1321 1342 22
64 63 3970 4032 63
98 95 9216 9310 95
87 26 2237 2262 26
44 23 990 1012 23
13 97 1165 1261 90
32 98 3039 3136 95
28 96 2593 2688 93
100 83 8218 8300 83
59 94 5453 5546 93
28 53 1432 1484 52
39 92 3497 3588 90

Table 2.3: Exponentiation in S6[x] (left) and S20[x] (right)

2.4 Semigroup actions on a set

Let X be any set. A semigroup S is said to act (from the left) on X if there is a
function (called the S-action)

S ×X → X
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such that for every s, t ∈ S and x ∈ X, (st) ·x = s · (t ·x). In [58], abelian semigroup
actions were used to construct a generalized Diffie-Hellman-like public key exchange
protocol based on a generalization of the discrete logarithm problem, which the
authors call the semigroup action problem.

Definition 2.6 (Semigroup Action Problem). Given a semigroup G acting on
a set X and elements x, y ∈ X, find g ∈ G such that gx = y, given that such a g
exists.

Protocol 2.1 (Extended Diffie-Hellman Key Exchange).
Let X be a finite set, G be an abelian semigroup, and ϕ a G-action on X. The
Extended Diffie-Hellman key exchange in (G,X, ϕ) is the following protocol:

1. Alice and Bob publicly agree on an element s ∈ S.

2. Alice chooses a ∈ G and computes her public key as. Her private key is a.

3. Bob chooses b ∈ G and computes his public key bs. His private key is b.

4. Their common secret key is a(bs) = (a · b)s = (b · a)s = b(as)

This construction was generalized and further investigated in several works [34, 35,
58]. In fact, when the semigroup is an abelian group, this construction may be seen
as an abstract formulation of some isogeny-based cryptographic problems [4, 23,
94]. In [34], the authors show Pohlig-Hellman type reductions which may lead to
a method of attacks on cryptosystems based on semigroup actions. For this, they
define the notion of reductions.

Definition 2.7. Let S and T be semigroups acting respectively on sets X and Y .
A reduction is a tuple (f, F,G) of maps f : S → T and F,G : X → Y such that for
all s ∈ S and x ∈ X, we have f(s) ·G(x) = F (s · x). A reduction is called effective
if the maps f, F,G are efficiently computable and 1 < |T | < |S|.

Given a semigroup action problem instance y = sx the authors of [34] suggest
that the existence of an “effective” reduction (f, F,G) can serve as an attack. In
particular, given a semigroup action problem instance x, y ∈ X where y = s·x, and a
reduction (f, F,G), one has another semigroup action problem instanceG(x), F (y) ∈
Y where F (y) = f(s) ·G(x). Thus, an adversary who can solve the semigroup action
problem in T can restrict the search in S to preimages of the solutions in T under
f . However, we observe that for these redutions to be truly practically effective,
some further assumptions are needed. In general, it does not seem that reductions
by themselves in general comprise a general and effective attack method in all cases.

Firstly, we observe that the reduced problem is not exactly an instance of the semi-
group action problem because there is an added constraint: the adversary needs to
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find t ∈ Im(f) ⊆ T such that F (y) = tG(x). Thus, effectively the adversary has to
solve a simultaneous semigroup action problem and a subset membership problem
in T . For some actions this constraint could add a dimension of extra complexity.

Further, once one solves the reduced semigroup action problem for t ∈ Im(f) ⊆ T ,
one still needs to search in f−1(t) ⊆ S for a solution to the original problem. So,
this set must be significantly smaller than (polynomial size in) S, or there should
be sufficiently many solutions within this set to render the probability of finding a
solution high enough. As an extreme example, if the solution s ∈ S of the original
semigroup action problem is unique, then the adversary has to brute force ove all of
f−1(t) ⊆ S. Note that in the case of the DLP, the preimage f−1(t) itself is unique,
and easily computable by the Chinese Remainder Theorem. This convenience is
likely to be absent for other semigroup actions.

Another important constraint is that it is not enough for |T | to simply be smaller
than |S|, it needs to be smaller by orders of magnitude for the complexity of a
generic solution to the reduced semigroup action problem to be lower than the
original. Thus, in general the condition |T | < |S| does not seem sufficient to define
the reduction as effective. In order to benefit from reduction to the group action
case, the adversary must be able to get there in polynomially many reductions,
which, apriori, does not seem to always be possible.

Intuitively, the two preceding constraints are conflicting. The smaller T is in com-
parison to S, the larger the sizes of the preimages f−1(t) would be on average.
Suppose that S is a semigroup and T is a subsemigroup of S much smaller than S.
Then, to reduce the problem from S to T one either needs to apply a large number
of reductions, or a small number of “highly effective” reductions, where the size
shrinks significantly at each step. For the latter case, f−1(t) is likely to be too big
for brute force search. Thus, it seems possible that in some cases these reductions
are not very effective, and in fact that a clever choice of s and S do not allow for
any benefit from performing them at all.

As an example, suppose that each reduction fi is such that the preimage size mag-
nifies by a factor of 2, i.e. |f−1

i (Ti)| = 2|Ti|. Then, for f = f1f2 . . . fn a composition
of reductions, the search space in S has size 2n. Thus, while one may end up with a
group action at the end, the remaining problem need not be negligible, and can in
fact dominate the algorithm for the final solution.
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3.1 Introduction

The construction and realization of cryptographic systems that resist quantum at-
tacks presently constitutes an important area of research. Apart from lattice-based,
multivariate, and code-based cryptography, it has been proposed recently to use the
rich structure of non-abelian groups to construct quantum-secure protocols for pub-
lic key exchange, message encryption, and authentication. Since Shor’s quantum
algorithm relies on the solution of the Hidden Subgroup Problem for finite abelian
groups, it is believed that non-commutative groups may offer a promising avenue.
Some recent surveys on this emerging field, called group-based cryptography, can
be found in [66] and [30].

The most prominent algorithmic problem employed for constructing non-abelian
protocols is the Conjugacy Search Problem (henceforth written CSP). While the
Discrete Logarithm Problem (henceforth written DLP) in a group G requires the
recovery of the exponent n when given the group elements g and h = gn, the CSP
requires the recovery of a conjugator x ∈ G, given the elements g and h = x−1gx. To
reflect this analogy, it is common to use the notation gx := x−1gx for g, x ∈ G, which
we also adopt in this chaoter. If the conjugator is restricted to lie in a subgroup
A ⊆ G, we refer to the problem as an A-restricted CSP.

The first and most prominently known protocols constructed based on the CSP
were by Ko-Lee [52] and Anshel, Anshel and Goldfeld (AAG) [5] and both of whose
underlying problems is a specific restricted CSP.

Protocol 3.1 (Ko et al. [52]). LetG be a finitely generated group, with subgroups
A and B that commute element-wise, i.e. ab = ba ∀a ∈ A,∀b ∈ B. Choose a base
element w ∈ G. The parameters G, A, B, and w are public.

1. Alice chooses a secret element a ∈ A, and publishes wa = a−1wa.

2. Bob chooses a secret element b ∈ B, and publishes wb = b−1wb.
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3. Alice computes KA = (wb)a, and Bob computes KB = (wa)b.

Since a and b commute, we have a common shared secret KA = KB = a−1b−1wab.

Note that the Ko et al. protocol has a major disadvantage in that it still requires
the elements of the chosen subgroups to commute with each other. This condition
narrows down the possibilities for the platforms that can be used drastically, and
also makes it difficult to find a suitable platform. The following protocol from [5]
shows a workaround to this hindrance.

Protocol 3.2 (Anshel-Anshel-Goldfeld). Let G be a group, and N1, N2 ∈ N,
1 ≤ L1 ≤ L2, and L ∈ N be parameters.

1. Alice randomly generates an N1-tuple of words ā = (a1, . . . , aN1) in G each of
length between L1 and L2. The tuple ā is called Alice’s public set.

2. Bob randomly generates an N2-tuple of words b̄ = (b1, . . . , bN2) in G each of
length between L1 and L2. The tuple b̄ is called Bob’s public set.

3. Alice randomly generates A = aϵ1s1 . . . a
ϵL
sL
, where 0 < si < N1 and ϵi = ±1 (for

each 1 ≤ i ≤ L). A is Alice’s private key.

4. Bob randomly generates B = bδ1t1 . . . b
δL
tL
, where 0 < ti < N1 and δi = ±1 (for

each 1 ≤ i ≤ L). B is Bob’s private key.

5. Alice computes b′i = A−1biA (1 ≤ i ≤ N2) and transmits them to Bob.

6. Bob computes a′i = B−1aiB, 1 ≤ i ≤ N1 and transmits them to Alice.

7. Alice computes KA = A−1a′ϵ1s1 . . . a
′ϵL
sL
. Clearly KA = A−1B−1AB.

8. Alice computes KB = b′−δL
tL

. . . b′−δ1
t1 B. Clearly KB = A−1B−1AB.

K = KA = KB is the shared secret key.

The security of the protocol clearly reduces to the following mathematical problem.

Definition 3.1 (Commutator Key Exchange Problem). Let G be a group. Let
a1, . . . , ak, b1, . . . , bk ∈ G. Let a ∈ ⟨a1, . . . , ak⟩, b ∈ ⟨b1, . . . , bk⟩. Given a1, . . . , ak, b1, . . . , bk,
ab1, . . . , a

b
k, b

a
1, . . . , b

a
k, compute a−1b−1ab.

In order to break the system and compute K, it is sufficient for the eavesdropper to
solve (subgroup-restricted SCSP) find one of the following:

• an element A′ ∈ ⟨a1, . . . , aN1⟩ such that b̄′ = A′−1b̄A′,

• an element B′ ∈ ⟨b1, . . . , bN2⟩ such that ā′ = B′−1āB′.
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Note that in order for the secret keys A and B to stay hidden during the transmission
process, or more generally, for the commutator key exchange problem to be difficult,
one requires a suitable representation of group elements, from which the required
decomposition into the given generators cannot be deduced easily. A well-defined
format for the representation of group elements is called a normal form.

The authors of both these systems proposed as platforms the Braid groupsBN , which
will be described in Section 3.4. However, a number of attacks [46, 67, 103] show that
the braid groups are not suitable platforms. Nevertheless, the possibility of finding
another potential non-abelian platform group for CSP-based protocols is still open
to research. Some other groups that have been proposed for use are polycyclic
groups, metabelian groups, p-groups, Thompson groups, and matrix groups.

When the underlying platform group is linear (i.e. embeds faithfully into a matrix
group over a field), several polynomial time attacks exist, which focus on retrieving
the private shared key without solving the CSP [12, 54, 65, 103]. However, in general
the computation of an efficient linear representation may pose a serious roadblock
for an adversary. Further, many of these attacks are impractical to implement for
standard parameter values. Such attacks are also typically protocol-specific, and
this always leaves open the possibility of constructing a different protocol, again
based on the CSP, where the known attacks are avoided. So far, the true difficulty
of the CSP in different platforms has not been sufficiently investigated.

Summary of Contributions

This chapter is focused on the study of the algorithmic complexity of the conjugacy
search problem in some classes of non-abelian platform groups.

The main contribution of this chapter, Section 3.2, gives a polynomial time reduction
from the conjugacy search problem to (a polynomial number of) discrete logarithm
problems, in two classes of groups. We produce a polynomial time solution for the
CSP in a finite polycyclic group with two generators, and show that a restricted
CSP is reducible to a DLP. In matrix groups over finite fields, we use the Jordan
decomposition of a matrix to produce a polynomial time reduction of an A-restricted
CSP, where A ⊆ GL(Fq) is a cyclic subgroup, to a set of DLPs over an extension
of Fq. This theory is used to cryptanalyse the systems proposed in [41, 93, 105]. A
direct consequence of our results is that the security of a protocol based on a cyclic-
restricted conjugacy search problem in linear platform group, essentially depends on
the difficulty of computing a representation of the platform and a set of DLPs. We
believe that our methods and findings are likely to allow for several other heuristic
attacks in the general case. The material in Section 3.2 is adapted from the preprint
[101] co-authored by me.
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In Section 3.3 we introduce a concept called efficient C-decomposability, which we
show is sufficient for the CSP in a central product of groups to reduce to individual
CSP’s in the components. This shows the importance of exercising caution when
selecting a platform group for a CSP-based system: central products with the effi-
cient C-decomposability property must be avoided, and a chosen platform must in
a way be “atomic”. We use this concept to demonstrate a polynomial time solu-
tion of the CSP in any extraspecial p-group. The result is practically relevant since
several non-abelian groups are constructed by combining smaller groups by taking
direct, central, and semidirect products (see, for example, [15, 25]). The material in
Section 3.3 is adapted from the preprint [100] authored by me.

Section 3.4 is a broad overview of some of the platforms groups and computational
problems employed in non-abelian group-based cryptography, and some of the com-
mon protocols for key exchange and signatures. In this section, we also discuss the
general and specific methods of cryptanalysis of non-abelian group-based systems.
This section serves more as a survey, and contains no new results.

3.2 Complexity of CSP in some polycyclic and

matrix groups

In this section, we study the complexity of various versions of the CSP in two
well-known classes of linear groups: polycyclic groups and matrix groups over finite
fields. Polycyclic groups were suggested for cryptographic use in [29], where some
evidence was provided for resistance to some known attacks. Matrix groups are
important for any non-abelian system, since whenever the platform group is linear,
an efficient faithful representation reduces the underlying problem to one in a matrix
group. Several proposed non-abelian cryptosystems use platforms that are special
instances of polycyclic or matrix groups, and employ problems either equivalent to,
or easier than, the versions of the CSP discussed in this chapter.

Our results show that security of the independent systems in [41, 93, 105] relies on
a problem at most as hard as a set of DLPs, so that the CSP here offers no novel
security feature. More generally, a direct consequence of our results is that a CSP-
based protocol in a linear platform with efficient representation must ensure that the
conjugators come from a subgroup with more than two generators in order to have
any potential security benefit. On the other hand, the case of finite polycyclic groups
with two generators shows that a larger subgroup A often offers an attacker with
more flexibility, rendering the A-restricted CSP easier. We believe that our findings
are likely to allow for several other heuristic attacks in the general case, when the
conjugators are not carefully chosen. The algebraic reductions demonstrated in this
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chapter may also prove useful in future cryptanalytic techniques for non-abelian
protocols over different platform groups.

3.2.1 Polycyclic groups

In [29], polycyclic groups were suggested as a potential platform for conjugacy-based
cryptography, and some evidence was provided for these groups resisting the length-
based attacks afflicting braid group-based systems. A survey of polycyclic group-
based cryptography can be found in [40]. This section discusses the complexity
of some special cases of the CSP in polycyclic groups. We start by introducing
polycyclic groups and some of their basic properties, and in particular briefly discuss
the complexity of performing the group operations.

Definition 3.2 (Polycyclic Group). A polycyclic group is a group G with a
subnormal series G = G1 > G2 > . . . > Gn+1 = 1 in which every quotient Gi/Gi+1

is cyclic. This series is called a polycyclic series.

Definition 3.3 (Power-Conjugate Presentation). Let G be a group with gen-
erators a1, a2, . . . , an. Let I ⊆ {1, 2, . . . , n} denote a list of indices and mi > 1 be
integers corresponding to elements i ∈ I. A power-conjugate presentation is a group
presentation of the form

G = ⟨a1, a2, . . . , an |ami
i = wii, i ∈ I,
aaij = wij, 1 ≤ i < j ≤ n,

a
a−1
i

j = w−ij, 1 ≤ i < j ≤ n, i ̸∈ I⟩, (3.1)

where the words wij are of the form wij = a
l(i,j,|i|+1)
|i|+1 . . . a

l(i,j,n)
n , with l(i, j, k) ∈ Z,

and 0 ≤ l(i, j, k) < mk if k ∈ I.

Lemma 3.1 ([47]). G is polycyclic if and only if it has a polycyclic presentation.

Define Gi = ⟨ai, ai+1 . . . an⟩, 1 ≤ i < n, Gn+1 = ⟨1⟩. The presentation in (3.1)
is called consistent if |Gi/Gi+1| = mi whenever i ∈ I, and the Gi/Gi+1 is infinite
whenever i ̸∈ I.

Definition 3.4 (Geodesic Form). Let G be generated by a set of symbols X, and
ai ∈ X ∪X−1, 1 ≤ i ≤ n. A word w = a1a2 . . . an is said to be in geodesic form if
there is no shorter word that represents the same group element.

Definition 3.5 (Normal Form). Given a consistent polycyclic presentation (3.1)
for a group G, every element a of G can be represented uniquely in the form a =
ae11 a

e2
2 . . . aenn where ei ∈ Z, 0 ≤ ei ≤ mi for i ∈ I. This is called the normal form of

a.
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Henceforth, as is standard, we will use the normal form to represent words in poly-
cyclic groups, and also assume that the presentations we deal with are all consistent.
Given a word w in G, the process by which minimal non-normal subwords are re-
duced to normal form using the relations in (3.1) is called collection.

Many different strategies for this process have been suggested, but the best-known
performance in most cases is achieved by the Collection from the Left Algorithm
[106], and its improvement in [33]. Under this, a word

w = (xα1
1 x

α2
2 . . . xαn

n )(xβ1

i1
. . . . . . xβt

it
)

is represented in two parts: collected part (as a vector (α1, α2, . . . , αn)) and uncol-
lected stack of generator powers s = (xβ1

i1
, . . . , xβt

it
). To collect w into normal form, a

finite number of generator powers from the uncollected part are iteratively pushed
onto the collected part by using the relations from the definition.

In general, the running time of this algorithm depends on the exponents appearing
across the whole process. Due to the dependence on the exponents in the interme-
diate steps, the complexity remains a rough and unclear estimate. It is clear that
collection is a key part of the group operations since it is involved in both multi-
plication and inversion of words in G, and so in general operations in a polycyclic
group may be inefficient. However, in many special cases, the complexity can be
bounded. We discuss the complexity of computing in polycyclic groups for some
cases, including all finite polycyclic groups, in the next subsection.

Complexity of Group Operations

Throughout this section, G denotes a polycylic group given by the presentation
(3.1). Below, we begin our discussion by showing that collected words in the last two
generators can be multiplied, inverted and exponentiated, using explicit formulas.
For simplicity, write the relations in xn−1 and xn as xxn−1

n = xLn , x
xn−1

−1

n = xDn for
fixed L,D ∈ Z.

Lemma 3.2. We have a formula to collect any word of the form xinx
j
n−1. For any

A,B ∈ Z,

xBn x
A
n−1 =

{
xAn−1xn

BLA
if A ≥ 0,

xAn−1xn
BD−A

if A < 0.
(3.2)

The following formula allows the computation of the product of r words given in
normal form. It is easily verified by induction on r.

Lemma 3.3. Let r ≥ 1 and wi = xAi
n−1x

Bi
n for 1 ≤ i ≤ r, and w = w1w2 . . . wr.
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Define

kj =

{
1, Aj ≥ 0

0, Aj < 0,
A+

i =
r∑

j=i+1

Ajkj, A
−
i =

r∑
j=i+1

Aj(1− kj).

Then, w = xAn−1x
B
n , with A =

r∑
i=1

Ai, and B =
r∑

i=1

BiL
A+

i DA−
i

Lemma 3.4. Let K > 0 and consider an element w = xAn−1x
B
n . Write E(A) = L,

if A ≥ 0, E = D if A < 0, F (A) = L, if A < 0, F (A) = D if A ≥ 0 (Ej =
kjL+ (1− kj)D). Then

(xAn−1x
B
n )

K = xKA
n−1x

B

(
E|KA|−1

E|A|−1

)
n ,

(xAn−1x
B
n )

−K = x−KA
n−1 x

−BF |KA|
(

E|KA|−1

E|A|−1

)
n .

Thus, operations on normal words in xn−1 and xn have complexity O(1). We now
consider words in the three generators xn−2, xn−1, xn.

Define constants A
(k)
j , B

(k)
j with x−k

n−2xjx
k
n−2 = x

A
(k)
j

n−1x
B

(k)
j

n for j = n−1, n, and k ∈ Z.
Clearly, A

(±1)
j and B

(±1)
j can be read from the group presentation.

Given A = A
(k)
j and B = B

(k)
j for any k ≥ 0, we obtain A

(k+1)
j and B

(k+1)
j (resp.

A
(k−1)
j and B

(k−1)
j if k < 0) in time O(1) by computing

x−1
n−2(x

A
n−1x

B
n )xn−2 = (xxn

n−1)
A(xx1

3 )B = wA
1 w

B
2

which requires two substitutions from the presentation, two exponentiations and
one word multiplication, of words in xn−1 and xn. The square and multiply method
can be used for subsequent exponents, giving a total complexity of O(log k) for

computing (A
(k)
j , B

(k)
j ). Note that if n ≥ 4 the complexity of computing

x−1
n−3(x

A
n−2x

B
n−1x

C
n )xn−3

depends on all of the exponents A,B,C, and their intermediate values, and from
this case onward nothing concrete can be said about the complexity in general.

Below, we consider the case where we have a general bound N for the exponents on
each generator at each step of collection. For instance, if each generator xi has finite
order mi, the exponents on xi can always be reduced in polynomial time, so we can
assume without loss of generality that N = max(mi). In particular this holds for
all finite polycyclic groups.
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Proposition 3.1. Let n ≥ 4. For j ≤ n − 3, the complexity of multiplying
two words, and of inverting a single word, in the generators xj, xj+1, . . . , xn is

O( (n−j)!
2

(logN)2(n−j−2)+1).

Proof. Note that from the above discussion we have a complexity of O(logN) for
multiplication and inversion of words in xn−2, xn−1 and xn. For j ≤ n− 3 we have

x−1
j (x

Aj+1

j+1 x
Aj+2

j+2 . . . xAn
n )xj =(x

xj

j+1)
Aj+1 (x

xj

j+2)
Aj+2 . . . (x

xj

j+1)
An

=w
Aj+1

j+1,j w
Aj+2

j+2,j . . . w
An
n,j

=wj+1,j wj+2,j . . . wn,j

=w

where the expression in the second line is obtained through (n−j) substitutions from
the presentation, the expression in the third line is computed in

∑n
i=j+1O(logAi)

word multiplications in xj+1, . . . , xn, and the final value w is computed in (n − j)
word multiplications in xj+1, . . . , xn. So, x

−1
j (x

Aj+1

j+1 x
Aj+2

j+2 . . . xAn
n )xj can be computed

in O((n− j) logN) word multiplications in xj+1, . . . , xn, and so

x−K
j (x

Aj+1

j+1 x
Aj+2

j+2 . . . xAn
n )xKj

can be computed in O((n − j) logK logN) word multiplications in xj+1, . . . , xn.
Thus, two normal words in xj, xj+1, . . . , xn can be multiplied by plugging in the
value of the conjugation by a power of xj and then performing a multiplication
of two words in xj+1, . . . , xn. So, the total complexity is O((n − j)(logN)2) word
multiplications in xj+1, . . . , xn. The result on multiplication then easily follows by
backwards induction on j ≤ n − 3. Similarly, a normal word in xj, xj+1, . . . , xn
can be inverted by performing an inversion of a word in xj+1, . . . , xn and then
plugging in the value of the conjugation by a power of xj. So, one must per-
form O((n− j)(logN)2) word multiplications in xj+1, . . . , xn and one inversion of a
word in xj+1, . . . , xn. It may be easily verified that this inversion too has an overall

complexity of O( (n−j)!
2

(logN)2(n−j−2)+1).

CSP in a Polycyclic Group with two generators

We consider the case n = 2, with two generators x1 and x2. Throughout, we will
write N1 = ord(x1) and N2 = ord(x2) as the respective orders of x1 and x2 in G,
which are both allowed to be infinite. We have two relations x−1

1 x2x1 = xL2 and
x1x2x

−1
1 = xD2 (the second is redundant if and only if N1 is finite, in which case

D = LN1−1). Note that if N2 is finite then gcd(L,N2) = 1, since if not, writing

L2 = gcd(L,N2) ̸= 1, we have x−1
1 x

N2/L2

2 x1 = 1, or x
N2/L2

2 = 1, a contradiction.

The following lemma is a consequence of Lemma 3.2 for the solution of the CSP.
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Lemma 3.5. The conjugated word (xc1x
d
2)

−1(xa1x
b
2)(x

c
1x

d
2) can be collected to xg1x

h
2

with g = a and

h =


−dLa + bLc + d; if c, a ≥ 0

−dLa + bD−c + d; if c < 0, a ≥ 0

−dD−a + bLc + d; if c ≥ 0, a < 0

−dD−a + bD−c + d; if c, a < 0

Theorem 3.1. If N2 = ord(x2) is finite, the CSP has a polynomial time solution in
G2.

Proof. Suppose we are given an instance of the CSP, i.e. an equation

(xc1x
d
2)

−1(xa1x
b
2)(x

c
1x

d
2) = xe1x

f
2 ,

where we want to solve for c and d. Then, from Lemma 3.5, a = e (mod N1) and
the CSP is reduced to solving a modular equation for two unknowns c and d.

If a ≥ 0, we have f + d(La − 1) = bLc, or f + d(La − 1) = bD−c. Writing b1 =
gcd(b,N2), we see that a solution for Lc (respD−c) exists if and only if d(La−1) = −f
(mod b1). Writing a1 = gcd(b1, L

a − 1), a solution d for d(La − 1) = −f (mod b1)
exists if and only if a1 | f . By construction, a solution (c, d) exists, so both these
conditions are satisfied. Further, a solution d to d(La − 1) = −f (mod b1) is given
by d = −(f/a1)((La − 1)/a1)

−1 (mod b1/a1). Write d = −(f/a1)((La − 1)/a1)
−1 +

Mb1/a1 for some M ∈ Z which we may choose. Then,

M(La − 1)/a1 = (f + d(La − 1))/b1 =

{
(b/b1)L

c, c ≥ 0

(b/b1)D
−c, c < 0

Writing A = (b/b1)
−1((La − 1))/a1 (clearly gcd(A,N2) = 1), we may take M = A−1

(mod N2), so that a solution is given by c = 0. Then d = (La−1/a1)−1(−f+b)/a1)).

Similarly, a solution can be obtained for the case a < 0 when N1 = ∞. Thus, in
both cases, a solution of the CSP involves a fixed number of applications of the
Euclidean algorithm, and so has polynomial time complexity.

Theorem 3.2. If N2 = ord(x2) is finite, the ⟨x1⟩-restricted CSP in G2 reduces to a
DLP. Further, the elements can be chosen so that it is exactly equivalent to a DLP
in (Z/N2Z)∗.

Proof. Here we have the exponents from Lemma 3.5, with d = 0, so the CSP
reduces to the retrieval of the exponent c where f = bLc (mod N2). Here, for a
solution to exist, b1 = gcd(b,N2) divides f , and we have f/b1 = Lc (mod N2/b1),
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so the adversary must solve the DLP with base L (mod N2/b1), for the exponent
c. Choosing the base element so that b satisfies gcd(b,N2) = 1, the restricted CSP
is exactly equivalent to a DLP in (Z/N2Z)∗.

Remark 3.1. If N2 =∞, then the CSP in G2 reduces to an exponential Diophantine
integer equation f = −dLa+bLc+d. As far as the author’s knowledge goes, there is
no known standard technique for solving such equations, and trial and error would
perhaps be the best method (for a general reference see [91]). For instance, the
adversary may try different values of c until f − bLc is a multiple of La − 1, and
subsequently solve for d. On the other hand, the ⟨x1⟩-restricted CSP in this case
has an easy solution: the adversary solves f = bLc for c simply by taking the real
number base-L logarithm of f/b ∈ Z.

CSPs in some other polycyclic groups

⟨x1⟩ -restricted CSP in a polycyclic group with three generators Here it
will be convenient to write s = x1, t1 = x2, t2 = x3 in the group presentation (3.1).
Also, write S = ⟨s⟩ and T = ⟨t1, t2⟩, θ = ord(s), θ1 = ord(t1), θ2 = ord(t2) as
the respective orders in G. Then T is a polycyclic group with two generators, and
so from Lemma 3.2 we have tB2 t

A
1 = tA1 t

BLA

2 , A,B ∈ Z. Further, S acts on T via

s−1t1s = t
a
(1)
1

1 t
a
(1)
2

2 , s−1t2s = t
a
(2)
1

1 t
a
(2)
2

2 for fixed integers a
(j)
i , i, j ∈ {1, 2}.

Representing an element tA1 t
B
2 of T as a tuple (A,B) ∈ Z/θ1Z× Z/θ2Z and writing

(tA1 t
B
2 )

si = tAi
1 t

Bi
2 we can describe the action of S as a recurrence relation given by

(A0, B0) = (A,B),

(Ai+1, Bi+1) =

(
a
(1)
1 Ai + a

(2)
1 Bi (mod θ1), a

(1)
2 LAia

(2)
1

LAia
(1)
1 − 1

La
(1)
1 − 1

+ a
(2)
2

LBia
(2)
1 − 1

La
(2)
1 − 1

(mod θ2)

)

Note that Ai is always given mod θ1 and Bi is always given mod θ2. While the
computation of Ai+1 and Bi+1 involves a “coupling” between these values, the final
values seen are always reduced, since they are the exponents in a reduced form
word expression. Further, while the first component Ai+1 of the tuple (Ai+1, Bi+1)
is linear in Ai and Bi, it is no longer linear in the previous terms of the sequence,
since Bi’s relationship to Ai−1 and Bi−1 is non-linear. The general complexity of the
⟨s⟩-restricted DLP, i.e. recovering i modulo θ from (Ai, Bi) is not clear. However,

note that when a
(2)
1 = 0 = a

(1)
2 , the problem reduces to a DLP in (Z/θ1Z)∗.

⟨x1⟩-restricted CSP in n generators when ⟨x2, . . . , xn⟩ is abelian

Here it will be convenient to write s = x1, t1 = x2, . . . , tn−1 = xn in the group
presentation (3.1). Also write S = ⟨s⟩ and T = ⟨t1, . . . , tn−1⟩, θ = ord(s), θi =
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ord(ti). Write tsi = t
a
(i)
1

1 . . . t
a
(i)
n−1

n−1 for 1 ≤ i ≤ n. Representing the elements of T as
column vectors (r1 . . . , rn−1) of the exponents ri of the ti, we can describe the action
of s on T by the endomorphism

Zθ1 × Zθ2 × . . .× Zθn−1 → Zθ1 × Zθ2 × . . .× Zθn−1

(r1, . . . , rn−1)→


a
(1)
1 . . . a

(n−1)
1

a
(1)
2 . . . a

(n−1)
2

... · · · ...

a
(1)
n−1 . . . a

(n−1)
n−1

 ·

r1
r2
...

rn−1

 .
Note that since a

(j)
i is always given modulo θi the entries of each column in the above

matrix (call it M) actually lie in separate groups Z/θiZ. However, we may obtain a
well-defined matrix power MN by first computing the power over the integers, and
then reducing the ith column modulo θi. Then, the action of sN on T is given by the
endomorphism described by the matrixMN and the ⟨x1⟩-CSP is simply the problem
of recovering N given MN . Note that this is in general not the same as a matrix
DLP because the entries of each column actually lie in separate groups. However,
if θ1 = . . . = θn−1 and M is invertible over Z/θ1Z, we can obtain N by solving the
matrix DLP in the subgroup ⟨M⟩ of the ring Mat(Z/θ1Z).

Examples

Holomorphs of Squarefree Cyclic Groups The holomorph of a group H is
defined as the natural semidirect product ofH with its automorphism group Aut(H).
Let Hol(Cp) = Cp ⋊ Aut(Cp) of a cyclic group Cp of prime order p, generated by g.
Aut(Cp) ∼= Z×

p is cyclic so Hol(Cp) is a polycyclic group with two generators. The
action of Z×

p on Cp is written as a conjugation: k−1hik = hik, k ∈ Z×
p , i ∈ Z.

Given conjugate elements g1 = hlk1, g2 = hnk2 in G, suppose we want to find
g = hmk such that g−1g1g = g2. It is easy to check that (hmk)−1(hlk1)(h

mk) =
hW (k−1k1k) with W = k((−m + l) + mk−1

1 ). Subsequently we get hW = hn and
(k−1k1k) = k2. The latter equation is trivial, so one only needs to solve n =
k((k1

−1 − 1)m+ l) (mod p) for m and k.

If k1 ̸= 1 (mod p) then k−1
1 − 1 ∈ Z×

p and for any k we find m = 1
k1

−1−1
(n
k
− l). If

k1 = 1 (mod p) then lk = n (mod p). If l = 0 (mod p) then n = 0 (mod p) and
both m and k take any value (here g1 = g2 = 1). If l ̸= 0 (mod p) then k = l−1n
and m takes any value.

We remark here that Hol(Cp) embeds into the ring Mat2(Fp) of 2× 2 matrices over
Fp, so the above solution has an equivalent matrix formulation. This solution may
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also easily be generalized to abelian groups of squarefree order, for which there is a
direct decomposition into cyclic factors, computable in polynomial time [18].

Generalized Quaternions A generalized quaternion group is a finite polycyclic
group given by the presentation

Q2n = ⟨x, y | xN = 1, y2 = xN/2, yx = x−1y,N = 2n−1⟩. (3.3)

Clearly, any element in this group has a normal form xiyj, where 0 ≤ i ≤ N ,
0 ≤ j ≤ 1.

One easily derives the relation yjxi = xi(−1)jyj for all i, j ∈ Z. Suppose we
have a CSP instance (xiy)−1(xay)(xiy) = xAy and want to solve for i. We have,
(y−1x−i)(xay)(xiy) = y−1xa−2iy2 = x2i−ay. Thus, the exponent i is found by solving
2i − a = A (mod N). Note that (xiy)−1(xa)(xiy) = y−1xay = x−a, so in this case
any value of i is a valid solution. Similarly, since x lies in the center of Q2n , the
⟨x⟩-restricted CSP is trivial.

Decomposition in Q2n It is easy to check that in Q2n this collection method can
be used to solve other problems related to the CSP, like the decomposition problem
of [92]. In [93], the following protocol was proposed for key exchange in the platform
Q2n . The underlying problem is a variation of the decomposition problem of [92].
As shown below, this protocol is easily broken by collection in Q2n and solving linear
equations mod N .

Protocol 3.3. The public parameters are G = Q2n given by (3.3) and subgroups
A1, A2 ⊆ ⟨x⟩.

1. (a) Alice picks secret elements a ∈ G, b1, b2 ∈ A1 and sends x1 = b1ab2 to
Bob.

(b) Bob picks secret elements di ∈ A2 and sends x2 = d1x1d2 to Alice.

(c) Alice sends x3 = b−1
1 x2b

−1
2 (= d1ad2) to Bob.

2. (a) Bob picks a secret element c ∈ G and sends y1 = d1cd2 to Alice.

(b) Alice sends y2 = b1y1b2 to Bob.

(c) Bob sends y3 = b1cb2(= d−1
1 y2d

−1
2 ) to Alice.

The shared secret is b = ac = a(b−1
1 y3b

−1
2 ) = (d−1

1 x3d
−1
2 )c.

Proposition 3.2. Protocol 3.3 can be broken in polynomial time by retrieving a
and c, which reduces to a system of linear equations over ZN .
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Proof. We assume that a ̸∈ ⟨x⟩, since otherwise, finding a is trivial. Similarly,
assume c ̸∈ ⟨x⟩. Write a = xAy, c = xCy, di = xDi , bi = xBi , 1 ≤ i ≤ 2. We have,
by collection,

x1 = xn1y = xB1+A−B2y, x2 = xn2y = xD1+n1−D2y, x3 = xn3y = xD1+A−D2y,

y1 = xm1y = xD1+C−D2y, y2 = xm2y = xB1+m1−B2y, y3 = xm3y = xB1+C−B2y.

The adversary sees the xi’s and yi’s, and thus also the mi’s and ni’s, for 1 ≤ i ≤ 3,
and needs to solve linear equations for A,C, Di’s, and Bi’s. The result is now
clear.

Observe that the discussion of this example is applicable in any group of the form
⟨x⟩⋊ ⟨y⟩, y2 ∈ ⟨x⟩. Another notable example is the dihedral group D2n.

Using matrix representations of polycyclic groups

Let G be given by the presentation (3.1). It is known that every polycyclic group
is linear, and thus embeds faithfully into a matrix group over some field. More
precisely, there exists m > 0, a field F and an injective homomorphism ϕ : G →
GLm(F).

Suppose that this matrix representation is used by the designer of the cryptosys-
tem to hide the structure of G. The public parameters are the generator matrices
Mi = ϕ(ai) and a base matrix Mx, and operations take place in GLm(F). Let My

denote one of the conjugated public keys. Note that given the generator matrices, an
adversary can compute their orders in polynomial time using binary search. How-
ever, to reconstruct the presentation of G and reduce the problem back to the CSP
in G, they are faced with the following problem: given a matrix X ∈ ⟨M1, . . . ,Mn⟩,
find integers (i1, . . . , in) such that X = M i1

1 . . .M in
n . Clearly, by solving O(n2)

instances of this problem they can compute the presentation of G and the words
representing Mx and My, thereby reducing the problem back to the CSP in G.

This problem has been discussed in [51], and is called the Generalized Discrete Loga-
rithm Problem (GDLP). The thesis [48] discusses some square-root type algorithms
for the GDLP in finite matrix groups. The case n = 2 has been discussed for general
finite groups in [61] and [50], both of which show a square root algorithm to reduce
the GDLP to at most two DLPs. Observe that in Q2n , this process introduces a sin-
gle matrix DLP into the protocol: an adversary sees matrices A =M i

xMy or A =M i
x,

and so can recover i by solving one of the matrix DLPs AM−1
y = M i

x, A = M i
x.

Therefore, in general using the matrix representation likely does not offer any novel
security feature, though it may enhance the overall security.
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Now, suppose that the original problem is given as a CSP in G and the adversary
is able to efficiently compute a faithful representation ϕ : G → GLm(Fq) as well
as its inverse. Denote by x ∈ G the public base element and y = g−1xg ∈ G the
public key. Then, it suffices for the adversary to find a matrix Mg ∈ ϕ(G) such
that M−1

g ϕ(x)Mg = ϕ(y), so solving a CSP in ϕ(G) breaks the system. In fact,
if the original CSP in G is an A-restricted CSP for A ≤ G cyclic, then it is not
even necessary to compute ϕ−1 since the secret here is essentially an integer. In
Theorem 3.1, we will see that an A-restricted CSP in GLm(F) is reducible to a set
of O(m2) DLPs over F. So, any system with a linear platform must ensure that
the subgroup from which conjugators are chosen has at least two generators. We
remark here that in the case where such an efficient representation ϕ and its inverse
are available, several attacks exist to directly retrieve the shared key, see [12, 54, 65,
103].

3.2.2 Matrix Groups

Throughout this section, q denotes a power of a prime p and Fq denotes the finite
field with q elements, and ord(a) denotes the multiplicative order of an element
a ∈ F∗

q.

Matrix groups over finite fields have served as platform groups for several proposed
protocols. In [60] and [32], the DLP over the matrix group GLn(Fq) was studied
and shown to be no more difficult than the DLP over a small extension of Fq, and
consequently less efficient in terms of key sizes for the same security level. Most
known non-abelian platform groups are linear, i.e. they embed faithfully into a
matrix group. If this embedding and its inverse can efficiently be computed by an
adversary, the security of the system depends on that of the matrix CSP rather than
that in the original platform.

It is then natural and important to study the complexity of the CSP over matrix
groups. Several attacks exist to directly retrieve the shared key from CSP-based
protocols without computing the secret keys [12, 54, 65, 103]. However, to the
best of our knowledge, the CSP and its variants have not been investigated in this
platform. In this section, we study the A-restricted matrix CSP for a cyclic subgroup
A ⊆ GLn(Fq). Here, for maximum generality we also allow the base element be a
non-invertible matrix. In other words, we provide a cryptanalysis of Protocol 3.4
over a ring R, for the case R = Matn(Fq) of n× n matrices over Fq.

Protocol 3.4. Let X ∈ R and Z ∈ R∗ be public elements.

1. Alice picks a secret integer r ∈ Z and publishes Z−rXZr.

2. Bob picks a secret integer s ∈ Z and publishes Z−sXZs.
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3. The shared secret is Z−s−rXZs+r.

In subsection 1, we provide a polynomial time reduction of recovering r ∈ Z to a
set of O(n2) DLPs. In subsection 2, we show how this enables a full cryptanalysis
of the system proposed in [105].

Remark 3.2. Similarly to [32] (also mentioned in [60]) we will use an easy generaliza-
tion of the Chinese Remainder Theorem (CRT) for systems of equations of the form
x ≡ xi (mod θi), 1 ≤ i ≤ s, where the θi are not necessarily coprime, but a solution
is required mod θ := lcmi θi. Write θ = pe11 . . . pett as the prime factorization of θ.
For each j ∈ {1, . . . , t}, let ∅ ≠ Ij ⊆ {1, . . . , s} denote the list of indices i such that
p
ej
j | θi. If a solution x to the original system of equations exists we have xi−xi′ = 0

(mod p
ej
j ) for each i, i

′ ∈ IJ and x = xi0 (mod p
ej
j ) for any i0 ∈ Ij. So if a solution

exists, we can translate the original system to one where the moduli are coprime,
and so can be solved with the CRT.

⟨Z⟩-restricted CSP in GLn(Fq)

Suppose that Z−rXZr = Y , the adversary sees X, Z, and Y ∈ Matn(Fq), the
integer r is secret. There exists an extension Fqk and a unique matrix P ∈ GLn(Fqk)
(computable in polynomial time, by Algorithm 1 in [60]) such that JZ = PZP−1,
where JZ is the Jordan Normal form of Z. Here Fqk is the smallest extension
containing all eigenvalues of Z, and k is polynomial in q and n [60]. Let θZ be the
order of Z in the group GLn(Fq) and θJ be the order of JZ in the group GLn(Fqk).
Then, clearly since JZ = PZP−1 we have θZ = θJ . Further, we only require a value
of r modulo θZ to break the system.

Consider M = PXP−1 and N = PY P−1. Note that these are both computable by
the adversary. It is easily verified that Z−rXZr = Y ⇐⇒ J−r

Z MJr
Z = N. Thus, to

recover r we may assume that Z is already in Jordan form. We divide the rest of
the analysis into two cases. We first consider the case where Z is diagonalizable.

Case: JZ is diagonal.

We write M = (Mi,j)n×n and N = (Ni,j)n×n.

Theorem 3.3. If JZ =

d1 . . . 0
...

. . .
...

0 . . . dn

 is diagonal then the retrieval of r in Proto-

col 3.4 reduces to solving at most n2 DLPs over Fqk .
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Proof. Note that di ̸= 0 ∀ i since JZ is invertible. We expand J−r
Z MJr

Z = N :d
r
1 . . . 0
...

. . .
...

0 . . . drn


M11 . . . M1n

...
. . .

...
Mn1 . . . Mnn


d

−r
1 . . . 0
...

. . .
...

0 . . . d−r
n

 =

N11 . . . N1n
...

. . .
...

Nn1 . . . Nnn


⇐⇒Mij(did

−1
j )r = Nij, 1 ≤ i, j ≤ n. (3.4)

By assumption M and N are nonzero matrices, so there exists at least one pair of
indices (i, j) such that Mij ̸= 0, Nij ̸= 0. For any such pair we have

(did
−1
j )r =M−1

ij Nij,

so r (mod ord(did
−1
j )) is found by solving a DLP in Fqk . Repeating this for all such

pairs (i, j), we may compute r modulo

lcm∃(i,j)|Mij ̸=0(ord(d
−1
i dj)) = lcmdi ̸=0(ord(di)) = θZ

using the generalized Chinese Remainder Theorem (see Remark 3.2).

Case: JZ is not diagonal

Suppose that JZ =

J1 . . . 0
...

. . .
...

0 . . . Js

 is the Jordan-Normal form of Z, where each

Ji =


λi 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . λi

 , 1 ≤ i ≤ s, is a di × di Jordan block corresponding to the

eigenvalue λi ∈ Fqk , and di > 1 for at least one i. Denoting
(−n

k

)
:= (−1)k

(
n+k−1

k

)
,

and with the convention
(
r
m

)
= 0 if m < r and r > 0, we have by induction, for

r ≥ 1,

Jr
i =


λr
i

(
r
1

)
λr−1
i . . .

(
r

di−1

)
λr−di+1
i

0 λr
i . . .

(
r

di−2

)
λr−di+2
i

...
...

. . .
...

0 0 . . .
(
r
1

)
λr−1
i

0 0 . . . λr
i

 , J−r
i =


λ−r
i

(−r
1

)
λ−r−1
i . . .

( −r
di−1

)
λ−r−di+1
i

0 λ−r
i . . .

( −r
di−2

)
λ−r−di+2
i

...
...

. . .
...

0 0 . . .
(−r

1

)
λ−r−1
i

0 0 . . . λ−r
i


More concisely, for any 1 ≤ i ≤ s, r ∈ Z, (Jir)(k,l) =

(
r

l−k

)
λr−l+k
i , 0 ≤ k, l ≤ di. Now,

we write M and N as block matrices with s2 di × dj blocks (Mi,j)di×dj , (Ni,j)di×dj :

M =

(M1,1)d1×d1 . . . (M1,s)d1×ds
...

. . .
...

(Ms,1)ds×d1 . . . (Ms,s)ds×ds

 , N =

(N1,1)d1×d1 . . . (N1,s)d1×ds
...

. . .
...

(Ns,1)ds×d1 . . . (Ns,s)ds×ds

 .
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The next result reduces the problem of recovering r from Protocol 3.4 to a set of s2

matrix equations involving Jordan blocks.

Lemma 3.6. J−r
Z MJr

Z = N ⇐⇒ J−r
i Mi,jJ

r
j = (Ni,j)di×dj ∀i, j, 1 ≤ i, j ≤ s.

Proof. The result is clear from the observation that

J−r
Z MJr

Z =

J
−r
1 . . . 0
...

. . .
...

0 . . . J−r
s


M11 . . . M1s

...
. . .

...
Ms,1 . . . Ms,s


J

r
1 . . . 0
...

. . .
...

0 . . . Jr
s


=

J
−r
1 M11J

r
1 . . . J−r

1 M1sJ
r
s

...
. . .

...
J−r
s Ms1J

r
1 . . . J−r

s MssJ
r
s

 .

Lemma 3.7. Writing Mi,j = (m
(i,j)
l,k ), Ni,j = (n

(i,j)
l,k ), we have J−r

Z MJr
Z = N ⇐⇒

n
(i,j)
f,h =

h∑
k=1

di∑
l=f

(
−r
l − f

)(
r

h− k

)
m

(i,j)
l,k λ−r+f−l

i λr−h+k
j

∀f, h with 1 ≤ f ≤ di, 1 ≤ h ≤ dj ∀i, j, 1 ≤ i, j ≤ s.

Proof. Recall that (Ji
r)(k,l) =

(
r

l−k

)
λ
r−l+k)
i for any integer r and any 1 ≤ k, l ≤ di.

We compute the (f, h)th term of J−r
i MijJ

r
j . Note that for 1 ≤ g ≤ di the (f, g)th

term of J−r
i Mi,j is given by

∑di
l=f

(−r
l−f

)
λ−r+f−l
i m

(i,j)
l,g . Thus, the (f, h)th term of

Ni,j = J−r
i Mi,jJ

r
j is

n
(i,j)
f,h =

h∑
g=1

di∑
l=f

(
−r
l − f

)(
r

h− g

)
m

(i,j)
l,g λ−r+f−l

i λr−h+g
j . (3.5)

For the equality J−r
i MijJ

r
j = Nij we require n

(i,j)
f,h = m

(i,j)
f,h for all indices f, h with

1 ≤ f, h ≤ di. The result now follows from Lemma 3.6.

Now, by assumption,M ̸= 0. So, we may choose the largest index l
(i,j)
0 such that the

l
(i,j) th
0 row of Mi,j has at least one nonzero term. Let g

(i,j)
0 be the smallest column

index such that m
(i,j)
l0,g0
̸= 0. We have, m

(i,j)
l,g = 0 ∀ l, g such that l > l0, 1 ≤ g ≤ dj,

and m
(i,j)
l0,g

= 0 ∀ g such that g < g0.
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Taking f = l0, h = g0 + 1, by Equation (3.5) the (f, h)th term of Ni,j = J−r
Z Mi,jJ

r
Z

is given by

n
(i,j)
l0,g0+1 =

g0+1∑
g=1

di∑
l=l0

(
−r
l − l0

)(
r

g0 + 1− g

)
m

(i,j)
l,g λ−r+l0−l

i λr−g0−1+g
j

=

g0+1∑
g=g0

(
r

g0 + 1− g

)
m

(i,j)
l0,g

λ−r
i λr−g0−1−g

j

= rm
(i,j)
l0,g0

λj(λ
−1
i λj)

r +m
(i,j)
l0,g0+1(λ

−1
i λj)

r (3.6)

In particular, for i = j, we have the equation rm
(i,j)
l0,g0

λ−1
j +m

(i,j)
l0,g0+1 = n

(i,j)
l0,g0+1, where

by construction, m
(i,j)
l0g0
̸= 0. This can be solved to get r′ := r (mod p). We thus

have the following results.

Proposition 3.3. The value of r′ := r mod p can be computed in polynomial time.

Proposition 3.4. Computing r mod lcm
1≤i≤s

ord(λi) reduces in polynomial time to

solving at most s2 DLPs in Fqk .

Proof. We write r = r′ + pw for w ∈ Z. From equation (3.6), since m
(i,j)
l0,g0
∈ Fqk , we

have

m
(i,j)
l0,g0+1 = rm

(i,j)
l0,g0

λj(λ
−1
i λj)

r +m
(i,j)
l0,g0+1(λ

−1
i λj)

r = (λ−1
i λj)

r(r′m
(i,j)
l0,g0

λj +m
(i,j)
l0,g0+1).

Equating (λ−1
i λj)

r(r′m
(i,j)
l0,g0

λj + m
(i,j)
l0,g0+1) = n

(i,j)
l0,g0+1 for i ̸= j, we see that r can

now be recovered (mod ord(λ−1
i λj)) by solving a DLP. Repeating this process for

all pairs (i, j), and using the generalized CRT (see Remark 3.2) we get r modulo
lcm

1≤i<j≤s
ord(λ−1

i λj) = lcm
1≤i≤s

ord(λi).

Computing r mod θZ As before, θZ denotes the order of JZ in the groupGL(Fqk).
We will now show how Propositions 3.3 and 3.4 allow us to compute r (mod θZ).
We have the following result on the value of θZ from [60].

Lemma 3.8 ([60]). The order θZ of JZ is lcm
1≤i≤s

(λi) · p{t}, where t is the largest

Jordan block in JZ and p{t} denotes the smallest power of p greater than or equal
to t.

Below, we show that if we can compute r (mod p), then by extension we can find r
(mod p{t}).
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Lemma 3.9. Suppose that an Algorithm A returns r (mod p) for an equation of
the form Z−rXZr = Y . Then, for any v ≥ 1, one may find r (mod pv) with v
applications of Algorithm A.

Proof. We write r = r0 + r1p + . . . + rv−1p
v−1 (mod pv). With one application

of Algorithm A, one finds r (mod p) = r0, and then compute Z1 = Zp, Y1 =
Zr0Y Z−r0 , r′ = r1+r2p+ . . .+rv−1p

v−2. Then, we have an equation Z−r′

1 XZr′
1 = Y1.

One now uses Algorithm A again to find r′ (mod p) = r1. In v applications of
Algorithm A, we recover r (mod pv).

Finally, we can prove the final result of this section.

Theorem 3.4. Let JZ be non-diagonal, and composed of s Jordan blocks. Then,
the computation of r from Protocol 3.4 is polynomial time reducible to a set of s2

DLPs over Fqk .

Proof. From Propositions 3.3 and 3.4, we may compute r mod lcm
1≤i≤s

λi and r
′ = r

(mod p) with the same time complexity as solving s2 DLPs in Fq. Note that since the
multiplicative order of any element of F×

qk
divides qk−1, the values of r′ = r (mod p)

and r (mod lcm
1≤i≤s

ord(λi)) are obtained independently. Now, write p{t} = pv ≤ qk,

by Lemma 3.9, we can obtain r (mod pv) from r′ in polynomial time O(k log q).
Combining r (mod pv) and r (mod lcm

1≤i≤s
λi) using the Chinese Remainder Theorem,

we get r (mod θZ), as required. It is also clear that every step apart from the DLPs
has polynomial time complexity.

We may thus summarize the results of Theorems 3.3 and 3.4 as follows.

Corollary 3.1. The ⟨Z⟩-restricted CSP in GLn(Fq) reduces in polynomial time to
O(n2) DLPs over a small extension Fqk of Fq.

Remark 3.3. While we have only discussed the search variant of the conjugacy prob-
lem, it is not hard to show that the arguments of this section also reduce the deci-
sional variant of the CSP to a set of corresponding decisional versions of the DLP and
generalized CRT. Further, this may be used, along with a collision-type square-root
algorithm, to solve any A-restricted CSP in GLn(Fq), where A is abelian.

Applications to Cryptanalysis

Protocol based on Quaternions (mod p) In [105], a protocol similar to Pro-
tocol 3.4 was proposed for the case of another ring R = Hp, which we will refer to as
the quaternions mod p. Recall that the set of all Lipchitz quaternions is defined as
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L = {a = a1+a2i+a3j+a4k | a1, a2, a3, a4 ∈ Z}. Similarly, the Hurwitz quaternions
are given by H = {a = a1 + a2i+ a3j + a4k | a1, a2, a3, a4 ∈ Z+ 1

2
Z}.

For a prime p, the authors define Hp as the set {a = a1 + a2i+ a3j + a4k | ai ∈ Zp}.
Addition, multiplication, the norm || · ||, and conjugates are defined in the usual way
as in quaternion algebras (for an exposition on arithmetic in quaternion sets, see
[104]), but over the base ring Zp. The quaternion a is invertible in Hp if and only if
||a|| ≠ 0 (mod p).

Denote by H∗
p the set of all invertible quaternions in Hp. The protocol in [105] is

described as follows:

Protocol 3.5.

1. Alice and Bob agree to choose randomly public elements x ∈ Hp , z ∈ H∗
p .

2. Alice picks two secret integers r, s ∈ Z such that 1 ≤ r ≤ p−1 and 2 ≤ s ≤ p−1
and then computes yA = zrxsz−r, and sends yA ∈ Hp to Bob.

3. Bob picks two secret integers u, v ∈ Z such that 1 ≤ u ≤ p−1 and 2 ≤ v ≤ p−1
and then computes yB = zuxvz−u, and sends yB ∈ Hp to Alice.

4. Alice computes KA = zryB
sz−r as the shared session key.

5. Bob computes KB = zuyA
vz−u as the shared session key.

We now show how the cryptanalysis for this protocol reduces to breaking Protocol 3.4
for R = Mat2(Fp). First, by the arguments in [104], we have H/pH = L/pL = Hp.
Now, by Proposition 3.3 of [104], for any integers a and b satisfying a2 + b2 ≡ −1
(mod p), the map

ϕa,b : H/pH → Mat2(Z/pZ)

γ1 + γ2i+ γ3j + γ4k 7→
(
γ1 + γ2a+ γ4b γ3 + γ4a− γ2b
−γ3 + γ4a− γ2b γ1 − γ2a− γ4b.

)
is an isomorphism of rings. Clearly, the inverse of ϕa,b is also easily computed as

ϕ−1
a,b

((
A B
C D

))
=
1

2
(A+D) +

1

2
(b(B + C)− a(A−D)) i+

1

2
(B − C)j − 1

2
(a(B + C) + b(A−D)) k

Thus, Protocol 3.5 may be treated as if it is over Mat2(Fp). Now, note that the
public keys are of the form y = z−rxszr where r and s are private integers, and
x ∈ Mat2(Fp), z ∈ GL2(Fp) are public matrices. The only difference now with
Protocol 3.4 is that this scheme has two secret integers instead of one. However,
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we observe that the presence of two secret integers weakens the scheme, because
an adversary can break the system if they find any pair of solutions (r, s) such that
KA = zrxsx−r. So, it makes sense to fix s, without loss of generality, to s = 1. Thus,
Corollary 3.1 for the case n = 2 now shows that finding r and breaking Protocol 3.5
reduces to at most four DLPs.

Subgroup Conjugacy Search in Matrix Groups In [41], the authors introduce
what they call the Subgroup Conjugacy Search Problem (SCSP) in a non-abelian
group G, and propose a protocol based on it, suggesting as potential platforms the
matrix group GLn(Fq) and a subgroup of it. We first note that the SCSP corresponds
exactly to the A-restricted CSP defined in this chapter, for a cyclic subgroup A of
G. Therefore, Corollary 3.1 gives a direct cryptanalysis of this protocol, reducing
its security to that of a set of O(n2) DLPs over a small extension of Fq.

While the authors state that the SCSP is at least as hard as the CSP, we remark that
this is likely not true in general. In Section 3.2.1 we showed that in finite polycyclic
groups with two generators, a well-chosen SCSP is harder than the CSP, whereas
by Remark 3.1 the SCSP in certain infinite polycyclic groups with two generators
groups is seemingly easier than the CSP. Similarly, Section 3.2.2 gives a complete
reduction of the SCSP in GLn(Fq) to a set of DLPs, but a solution to the general
CSP is unclear. This may be intuitively realized, since while there is an added
constraint in the SCSP, the adversary also has more information on where to search
for the conjugator.

3.3 CSP in Central Products

In this section, we study the complexity of the CSP in so-called central products
of groups. We define a property called efficient C-decomposability of a group and
show that an instance of the CSP in a central product G = HK reduces to two
separate instances of the CSP in H and K, if G satisfies this property. We also
provide examples of groups which possess this property, and apply this concept to
demonstrate the solution of the CSP in all extraspecial p-groups.

The results on central products also demonstrate that while considering any plat-
form group for a CSP-based system, care must be taken to ensure that an efficient
decomposition into a central product is not possible. This is practically significant
for future work in group-based cryptography since several non-abelian groups, and
in particular, p-groups, are constructed by combining smaller p-groups by taking
direct, central, and semidirect products (see, for example, [15, 25]).

Throughout, we denote by p a prime number, Cp the cyclic group of order p, and
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by H ⋊ K a semidirect product of groups H and K (with K acting on H by
automorphisms). The center of a group G is denoted by Z(G). For a subset S
and an element x of a group G we use the notations xS := {xz | z ∈ S} and
Sx := {zx | z ∈ S}. For any x ∈ G, denote by Cx := {g−1xg | g ∈ G} the
conjugacy class of x. For subsets S1 and S2, the product S1S2 denotes the set
{s1s2 | s1 ∈ S1, s2 ∈ S2}. An algorithm on a finite group G will be said to be
polynomial time if its time complexity is O(log|G|).

Definition 3.6. A group G is said to be a central product of its subgroups H and
K if every element g ∈ G can be written as hk, with h ∈ H, k ∈ K (i.e. G = HK),
and we have hk = kh ∀ h ∈ H, k ∈ K (thus, H ∩K ⊆ Z(G)).

Below, we introduce the concept of efficient C-decomposability.

Definition 3.7. A finite group G is said to be efficiently C-decomposable if for any
elements h, k, x, y ∈ G with hCx ∩ kCy ̸= ∅, an element of hCx ∩ kCy can be found
in polynomial time.

The result below shows that in an efficiently decomposable group G which is also
a central product of its subgroups H and K, the CSP in G can be reduced to the
CSP in the individual component subgroups H and K.

Theorem 3.5. Let G be an efficiently C-decomposable group and H and K be
subgroups of G such that G = HK is a central product. Then, solving the CSP in
G is polynomial time reducible to solving two separate CSP’s in H and K.

Proof. Let g̃ = h̃k̃, g′ = h′k′ be elements in G. Suppose that we want to solve the
CSP for g̃ and g′, i.e. to find an element g = hk such that g−1g̃g = g′. We have,

(hk)−1(h̃k̃)(hk) = k−1h−1(h̃k̃)hk = (h−1h̃h)(k−1k̃k)

=⇒ (h−1h̃h)(k−1k̃k) = h′k′

=⇒ h′
−1
(h−1h̃h) = k′(k−1k̃k)−1 ∈ h′−1Ch̃ ∩ k

′Ck̃−1 ⊆ H ∩K (3.7)

Note that h′−1(h−1h̃h) = k′(k−1k̃k)−1 ∈ h′−1Ch̃ ∩ k′Ck̃ ⊆ H ∩K. By hypothesis, we
can find, in polynomial time, an element t ∈ h′−1Ch̃ ∩ k′Ck̃−1 .

Now consider the following two separate instances of the CSP in H and K.

h−1h̃h = h′t ∈ H and (k−1k̃k) = k′t−1 ∈ K (3.8)

Suppose that we have solutions h and k of (3.8). Then, for g = hk, we have
g−1g̃g = (hk)−1(h̃k̃)(hk) = (h−1h̃h)(k−1k̃k) = (h′t)(k′t−1) = h′k′. Thus, g = hk
is a solution to g−1g̃g = g′. We conclude that g̃ and g′ are conjugate if and only
if h′−1Ch̃ ∩ k′Ck̃ ̸= ∅, and that in this case, a conjugator can be found by solving
(3.8).
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Examples

We present two examples of efficiently decomposable groups below. Before this, we
recall the following well-known number theoretic fact. The modular linear equation
ax ≡ b (mod n) in x has a solution if and only if gcd(a, n) | b. When a solution
exists, it may be found in time O(log n).

Example 3.1. The dihedral groups Dn are all efficiently C-decomposable. Consider
Dn, which has the presentation ⟨x, y | xn = 1, y2 = 1, yx = x−1y⟩. Then we have
yjxi = xi(−1)jyj for all i, j,

CxAyB = {xi+A(−1)j−i(−1)ByB | 0 ≤ i ≤ n− 1, 0 ≤ j ≤ 1}

(xkyl)CxAyB = {xk+(−1)l[i+A(−1)j−i(−1)B ]yl+B | 0 ≤ i ≤ n− 1, 0 ≤ j ≤ 1}

Write h = xk1yl1 , u = xA1yB1 , k = xk2yl2 , v = xA2yB2 . It is then easily verified that
finding a common element of hCu and kCv amounts to finding (i1, i2, j1, j2) from an
equation of the form

k1+(−1)l1 [i1+A1(−1)j1−i1(−1)B1 ] = k2+(−1)l2 [i2+A2(−1)j2−i2(−1)B2 ] (mod n)

Clearly, one may choose values of j1 and j2 and then find a linear relation between
i1 and i2 by solving a linear modular equation. Thus, a solution can be found in
time O(log n).

Example 3.2. The generalized quaternion groups Q2n are all efficiently C-
decomposable. A generalized quaternion group is given by the presentation

Q2n = ⟨x, y | xN = 1, y2 = xN/2, yx = x−1y,N = 2n−1⟩. (3.9)

We derive the relations xiy = yxN−i and yxi = xN−iy. Using these one easily derives
the relation yjxi = xi(−1)jyj for all i, j ∈ Z.

(xkyl)CxAyB = {xk+(−1)j+l[A−i+i(−1)B ]yB+l | 0 ≤ i ≤ N, 0 ≤ j ≤ 1}

Write h = xk1yl1 , u = xA1yB1 , k = xk2yl2 , v = xA2yB2 . Then finding a common
element of hCu and kCv amounts to solving an equation of one of the following
forms for (i1, i2, j1, j2):

k1 + (−1)j1+l1 [A1 − i1 + i1(−1)B1 ] = k2 + (−1)j2+l2 [A2 − i2 + i2(−1)B2 ] (mod N)

Again, one may choose values of j1 and j2 and then find a linear relation between i1
and i2 by solving a linear modular equation. Thus, a solution can be found in time
O(logN).
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Remark 3.4. Consider the group Sn of permutations on n elements. If x and y ∈ Sn

are cycles, then finding an element of hCx ∩ kCy for any h, k ∈ Sn can be done in
polynomial time. This follows from Theorem 5 in [44], by taking σ = h−1k and
noting that the result used at each step is in fact constructive and achievable in
polynomial time. However, for x and y general permutations, a procedure to find
an element in hCx ∩ kCy is not, in the author’s knowledge, so far clear.

Extraspecial p-groups are efficiently C-decomposable

A finite group with order a power of a prime p is called a p-group. Some p-groups
have been sporadically suggested as platforms for cryptography. For example, in [42],
authentication and signature schemes using the CSP were proposed, and general p-
Miller groups were suggested as platforms.

Definition 3.8 (Extraspecial p-group). A p-group G is called extraspecial if its
center Z(G) is cyclic of order p, and the quotient G/Z(G) is a non-trivial elementary
(i.e. every element has order p) abelian p-group.

The following results are standard, and can be found, for instance, in [38], [21].

Theorem 3.6. There are two isomorphism classes for the extra special group of
order p3: M(p) = Cp2 ⋊ Cp and N(p) = (Cp × Cp)⋊ Cp with presentations

M(p) = ⟨x, y | xp2 = 1, yp = 1, yxy−1 = x1+p⟩ (3.10)

N(p) = ⟨x, y, z | xp = yp = zp = 1, xy = yx, yz = zy, zxz−1 = xy−1⟩ (3.11)

Remark 3.5. We observe that given the generators of an extraspecial group of order
p3, one can find, in polynomial time, which of the two isomorphism classes this group
belongs to, simply by raising each generator to the power p.

Theorem 3.7. Any central product G of finitely many copies of N(p) and M(p) is
efficiently C-decomposable.

Proof. We first deal with the case G = M(p). By induction, one can easily show
that yjxi = xi(1+p)jyj = xi(1+jp)yj ∀ i, j ∈ Z. By recursively using this formula, we
have

(xiyj)−1(xayb)(xiyj) = x(a−i)(1−jp)yb−jxiyj = xa−p(aj−bi)yb. (3.12)

We have for g′ = xayb and g = xcyd

gCg′ = {(xcyd)(xa−p(aj−bi)yb) | i, j ∈ Z} = {xc+a−p(aj−bi−ad)yd+b} | i, j ∈ Z}
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Writing gi = xciydi , g′i = xa1yb1 , i = 1, 2. It is clear that if an element common
to the sets g1Cg′1

and g2Cg′2
exists, then we must have b1 + d1 = b2 + d2 (mod p),

c1 + a1 = c2 + a2 (mod p) and such an element may be found by solving

1

p
[(c1 + a1)− (c2 + a2)] = (a1j1 − b1i1 − a1d1)− (a2j2 − b2i2 − a2d2) (mod p)

for i1, i2, j1, j2. Clearly, this is a linear equation, so a solution can be found in time
O(log p).

Now we consider G = N(p). By induction, one can show that zkxaz−k = xay−ka

for all a, k ∈ Z. Thus, zkxayb = xay−kabzk for all a, k ∈ Z. Write g = xaybzc,
g′ = xAyBzC , and h = xiyjzk. We have,

(xiyjzk)−1(xaybzc)xiyjzk =z−kxa−izcxizkyb = xa−iyk(a−i)xiykiz−kyb−cizk+c

=xayka−ic+bzc (3.13)

Thus, we have

gCg′ = {(xdyezf )(xayka−ic+bzc) | i, k ∈ Z} = {(xd+aye−fa+ka−ic+bzf+c) | i, k ∈ Z}

Writing gi = xdiyeizfi , g′i = xaiybizci , i = 1, 2, It is clear that if an element common
to the sets g1Cg′1

and g2Cg′2
exists, then we must have a1 + d1 = a2 + d2 (mod p),

c1+f1 = c2+f2 (mod p) and such an element may be found by finding (i1, j1, i2, j2)
satisfying

1

p
[(c1 + a1)− (c2 + a2)] = (a1j1 − b1i1 − a1d1)− (a2j2 − b2i2 − a2d2) (mod p)

Thus, M(p) and N(p) are both efficiently C-decomposable.

For the statement on central products, let G = H1 . . . Hr+s be a central product,
where for each i, Hi ∈ {M(p), N(p)}. First observe that the conjugacy class CG

g of
g = h1 . . . hr in G can be written as the product CG

g = Ch1 . . . Chr+s of conjugacy
classes Chi

of hi in Hi. Further, for any g
′ = h′1 . . . h

′
r ∈ G, g′Cg = h′1Ch1 . . . h

′
rChr+s .

Without loss of generality Hi = M(p), 1 ≤ i ≤ r, Hi = N(p), r + 1 ≤ i ≤ s + r so
xp1 = xp2 = . . . = xpr = yr+1 = . . . = yr+s.

Write g = h1 . . . hs+r, g
′ = h′1 . . . h

′
s+r, hi, h

′
i ∈ Hi. By the discussion above, there

exist linear polynomials Ai(s, t) and constants Bi 1 ≤ i ≤ r and linear polynomials
Bi(u) and constants Di, Ci, r + 1 ≤ i ≤ r + s each determined by hi, h

′
i, such that

g′Cg =h
′
1Ch1 . . . h

′
rChr

=(x
A1(s1,t1)
1 yB1

1 ) . . . (xAr(sr,tr)
r yBr

r ) . . . (x
Dr+s

r+s y
Br+s(u)
r+s z

Cr+s

r+s )

=(x
A1(s1,t1)
1 . . . xAr(sr,tr)

r . . . x
Dr+s

r+s )(yB1
1 . . . yBr

r . . . y
Br+s(u)
r+s )(z

Cr+1

r+1 . . . z
Cr+s

r+s )
(3.14)
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Note that this expression is not unique, as the intersections Hi ∩Hj, i ̸= j are not
empty. One may further reduce the Ai(si, ti)’s by substituting xp1 = xp2 = . . . =
xpr = yr+1 = . . . = yr+s, so without loss of generality we may assume that in the
above expression, all exponents are less than p. Under this restriction, such an
expression is unique. Now in order to find an element common to g1Cg′1

and g2Cg′2
one may equate the polynomials in the exponents of the xi’s and yi’s (note that all
the exponents of the zi’s are constants so they must be equal if the intersection is
nonempty) and solving for the integers si, ti, ui as done above, individually in each
group. This requires the solution of at most r + s linear equations (mod p), and
thus has complexity O((r+s) log p) = O(log |G|). Thus, a polynomial time solution
exists, and G is efficiently C-decomposable.

It turns out that any extraspecial p-group can be constructed from M(p) and N(p)
by taking central products, as formulated in the below well-known theorem which
can be found, for instance, in [38].

Theorem 3.8. Every extraspecial p-group has order p1+2n for some positive integer
n, and conversely for each such number there are exactly two extraspecial groups up
to isomorphism. Every extraspecial group of order p1+2n can be written as a central
product of either n copies of M(p) or n− 1 copies of M(p) and 1 copy of N(p).

A polynomial time algorithm for the computation of such a central product decom-
position was given in [107]. As a consequence of this fact, along with Theorems 3.7
and 3.8, one concludes that all extraspecial p-groups are efficiently C-decomposable.

CSP in extraspecial p-groups It is known that the CSP in any finitely presented
nilpotent group has a polynomial time solution (for instance, see [57]). Since the
extraspecial p-groups are finitely presented nilpotent, the CSP in them can efficiently
be solved in polynomial time. Nevertheless, we demonstrate below an alternate
solution, as an application of the theory of efficient C-decomposability, by lifting
the individual solutions of the CSP in M(p) and N(p) to all extraspecial p-groups.

3.4 An Overview of Braid-Based Cryptography

In this section, we provide a brief overview of some of the construction and crypt-
analytic techniques that have been employed in protocols based on Braid groups.
In particular, we will focus on the Algebraic Eraser and WalnutDSA (a signature
scheme) We begin by giving a description of two of the common employed groups
used as platforms for the protocols, the Braid groups and the Coloured Burau group.
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Algorithm 3.1: Solving the CSP in an extraspecial p-group

Input Generators of an extraspecial p-group G and conjugate elements
g̃, g′ ∈ G
Output A conjugator g ∈ G such that g−1g̃g = g′

1: Use the algorithm of [107] to get a central product decomposition of G
finitely many extraspecial groups of order p3. Without loss of generality,
G = H1 . . . Hr+s, for Hi =M(p), 1 ≤ i ≤ r, Hi = N(p), r + 1 ≤ i ≤ s+ r.

2: Write g = h1 . . . hr+s, set j ← 1.
3: while j ≤ r + s

(a) K̄ ← Hj+1 . . . Hr+s, H̄ ← Hj. Write
g′ = h′k′, g̃ = h̃k̃′, h′, h ∈ H̄, k′, k ∈ K̄.

(b) Find an element tj ∈ h′−1Ch̃ ∩ k′Ck̃ by equating expressions of
the form (3.14).

(c) Solve for hj by solving the CSP h−1
j h′jhj = h′jtj in Hj, using

Equations (3.12) and (3.13).
(d) j ← j + 1.

3.4.1 Platform Groups and Algorithmic Problems

Braid groups

The Braid group on n stands is defined as the infinite group with the following
presentation (called classical Artin’s presentation)

Bn = ⟨σ1, . . . , σn−1 |σiσjσi = σjσiσj if |i− j| = 1,

σiσj = σjσi if |i− j| > 1⟩

A word over the alphabet {σ1, σ2, . . . , σn−1}, also called Artin’s set of generators, is
called a Braid word or Braid. The length of a shortest braid word representing an
element g ∈ Bn is called the geodesic length of g relative to Artin’s set of generators
and is denoted by |g|.

This group has an elegant geometric description. One may view a braid on n strings
(i.e. an element of G) as an object consisting of 2n points and n strings such that

1. The beginning/ending points of the strings are (all) the top and bottom points,

2. The strings do not intersect,

3. No string intersects any horizontal line more than once.

Two braids on the same number of strings are said to be equivalent if the strings of
one can be transformed into the strings of the other in the space strictly between
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the peripheral points and without crossing (“pulling the strands”), keeping the ends
fixed. Two braids can be “added” to yield a new braid by concatenation, i.e. joining
the bottom points of the first braid to the top points of the second.

Note that Bn has a cyclic center generated by an element ∆2, where ∆ =
(σ1 . . . σn−1)(σ1 . . . σn−2) . . . (σ1) is called the half-twist. The normal form typically
used for the Braid groups is called the Garside normal form.

Coloured Burau group

Let t = (t1, . . . , tn) be variables and Sn denote the group of permutations on n
elements. Then, Sn acts naturally on GLn(Fq(t)) by permuting the ti’s. Denote
this action by sm for m ∈ GLn(Fq(t)), s ∈ Sn. Consider the semidirect product
GLn(Fq(t))⋊ Sn = {(m, s) | m ∈ GLn(Fq(t)), s ∈ Sn} with multiplication given by

(m1, s1) · (m2, s2) := (m1
s1m2, s1s2)

Each generator σi of Bn is associated homomorphically to a specific matrix CB(σi)
in GLn(Fq(t)).

CB(σ1) =

−t1 1 0
0 1 0
0 0 In−2

, CB(σ−1
1 ) =

− 1
t2

1
t2

0

0 1 0
0 0 In−2



CB(σi) =


Ii−2 0 0 0 0
0 1 0 0 0
0 ti −ti 1 0
0 0 0 1 0
Ii−2 0 0 0 In−i−1



CB(σ−1
i ) =


Ii−2 0 0 0 0
0 1 0 0 0
0 − 1

ti+1

1
ti+1

1 0

0 0 0 1 0
Ii−2 0 0 0 In−i−1


Let si = (i i + 1) ∈ Sn be the transposition switching i and i + 1 and
gi = (CB(σi), si) ∈ GLn(Fq(t)) ⋊ Sn. The subgroup G := ⟨g1, . . . , gn−1⟩ of
GLn(Fq(t)) ⋊ Sn is called the Coloured Burau group. The following algorith-
mic problem has been proposed to be a one-way function.

Definition 3.9 (E-multiplication). Let τi be nonzero elements of Fq. De-
fine a map ϕ from a subgroup of (infinite matrices) GLn(Fq(t1, . . . , tn)) to
GLn(Fq) by replacing each ti with a nonzero element τi ∈ Fq. For
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(S, π), (M,σ) ∈ GLn(Fq(t1, . . . , tn)) ⋊ Sn, define e-multiplication by (S, π) ⋆
(M,σ) = (Sϕ(πM), πσ).

Thus, reversing e-multiplication comprises the following problem. Given a pair
(M,σ) ∈ GLN(Fq)×Sn such that (M,σ) = P(s) := (Id, 1)⋆ s for some braid s, find
a braid s′ such that P(s′) = (M,σ). Some protocols also employ in addition what is
called the cloaking problem, which involves obfuscation of braids by multiplication
with suitable group elements. Denote by the C(b1, . . . , br) the commutator of the
elements b1, . . . , br, i.e. C(b1, . . . , br) := ⟨b−1

i b−1
j bibj | 1 ≤ i, j ≤ r⟩.

Definition 3.10 (Cloaking Problem). Given braids b1, . . . , br commuting with
unknown braid A, a permutation σB associated with an unknown braid B ∈
⟨b1, . . . , br⟩, and a braid PA ∈ CσB

A, find an element in CσB
PA ∩ C(b1, . . . , br).

We now go on to describe some of the well-known public-key protocols based on the
platforms and algorithmic problems described above.

3.4.2 Some Braid-Based Protocols

Algebraic Eraser

The Anshel-Anshel-Goldfeld-Lemieux key agreement protocol [8] uses the action of
the semidirect product GL(n,Fp(t)) ⋊ Sn on the set GL(n,Fp) × Sn to obscure al-
gebraic structures. This protocol lies at the core of the Algebraic Eraser, which
was proposed for key exchange use within lightweight cryptography, low-cost de-
vices which constraint the use of computational resources, specifically in Internet of
Things (IoT) devices, such as RFID tags.

It combines the commutator key exchange protocol with an additional method for
obscuring elements. In [66], it was shown that the security of this system is broken
if the following problem can be solved.

Definition 3.11 (Simultaneous Conjugacy Separation Search Prob-
lem). For tuples {v1, . . . , v′γ}, {w1, . . . , w

′
γ} find any braid z′ and any numbers

p1, . . . , pγ, r1, . . . , rγ ∈ Z such that the words {∆2p1z′−1v′1z
′, . . . ,∆2pγz′−1v′γz

′} and
{∆2r1z′−1w′

1z
′, . . . ,∆2rγz′−1w′

γz
′} can be expressed as words over 2 disjoint commut-

ing subsets of generators of Bn

WalnutDSA

WalnutDSA [9] was one of 20 entries for public key signature schemes at NIST call
for post-quantum cryptography. It is based on the colored Burau group platform and
e-multiplication as a one-way function. Under this scheme, the signer’s private key
consists of two braids and the public keys are matrices. Signatures are generated by
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performing E-multiplication, but the verification step requires only operations with
the matrix components. The security model is chosen to be Existential unforgeability
under chosen message attacks (EU-CMA) under which the adversary can ask for
polynomially many signatures of messages to a signing oracle.

The Kayawood protocol uses similar techniques to WalnutDSA and is used for key
exchange. Similarly, the Ironwood protocol [6] designed using the same principles
for message encryption.

3.4.3 Methods for Attacks

Length-based attacks

Under a length-based attack, the adversary uses a length function | · | in Bn to
approximate the geodesic length, and formulates the underlying group theoretic
problem as a minimization problem. This can then be solved heuristically with a
greedy descent algorithm. The underlying idea behind the greedy algorithm is that
for random x, |x−1ux| > |u| is true for almost all tuples u, and for a random x1, x2
with |x1| > |x2|, |x−1

1 ux1| > |x−1
2 ux2| is true for almost all tuples u. To find the

unknown conjugator, the algorithm repeatedly conjugates the tuple of elements by
generators of Bn and their inverses. If a decrease in total length of the tuple is
observed for a generator it is assumed that this generator is involved in the required
conjugator. The attack of [66] on WalnutDSA is an important example.

Linear algebra attacks

There exists a broad range of attacks that apply when the underlying platform
group G has an efficient, faithful matrix representation ρ : G → GLn(Fq) with an
efficiently computable inverse. In this case, the algorithmic problem of G can be
reduced to the corresponding problem in a matrix algebra over a finite field. In order
to solve this problem, the attacker must develop a method for efficiently computing
the bases of cleverly chosen subspaces or subalgebras of the matrix algebra. Once
such a basis is available, the underlying problem is solved in polynomial time. There
are several variations of such an attack, for example [12, 65, 103].

In [12] and [11] the attacks on the Algebraic Eraser proceed by generating lots
of elements from the involved subgroup of GLn(Fq) and using them to find linear
relationships between the secret braids. Then, an algorithm from permutation group
theory is used to compute braids with the specific involved permutations. From this,
the shared key is derivd. In [11] an attack is devised that subverts the problem of
sovling the simulataneous CSP by building surrogate private keys.
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Other attacks

In [43], a universal forgery attack on WalnutDSA was provided, which broke the
system in a matter of two minutes assuming access to a small set of random message-
signature pairs. It reduces the problem of forging signatures to a factorization prob-
lem in the group GLn(Fq). There is also a generic birthday/collision-based attack
against WalnutDSA in [13], under which, if the hashes of two messages are “equiva-
lent” in the coloured Burau group, then a valid signature for one is a valid signature
for the other. The security of the system is broken by finding two such messages.
In [53], an “uncloaking” attack is presented against the Kayawoof protocol, which
shows that the method of generating cloaking elements produces a distribution that
enables an attack using only the public keys.
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Chapter 4

Cryptanalysis of a System based on
Twisted Dihedral Group Algebras

4.1 Introduction

The design of efficient public key cryptographic systems that resist quantum attacks
presently constitutes the important area of research called post-quantum cryptog-
raphy. Non-commutative structures such as non-abelian groups, group rings, semi-
groups, etc., along with pertinent algorithmic problems, have been used for the
construction of cryptosystems in a plethora of works in this field. Two algorithmic
problems that find great mention in this realm are the so-called conjugacy search
problem and the decomposition problem (see [16, 41, 92]).

In Chapter 3, we discussed the various aspects of non-abelian group-based cryptog-
raphy and the solution of the conjugacy search problem in various groups. In this
chapter, we shift our focus to the decomposition problem, and look at a different
kind of platform, viz. twisted group algebras, which are similar to group algebras
but have a more complicated multiplicative structure. In [24], the authors con-
struct a key exchange system based on so-called twisted group algebras over a finite
field Fq and a double-sided multiplication problem. In this chapter, we give a full
cryptanalysis of this system.

The underlying platform of the system in [24] is a twisted group algebra of the
dihedral group D2n over a finite field Fq with twisted multiplication defined with
the help of a function, called a 2-cocycle. The 2-cocycle α is chosen by the authors
such that Fα

qD2n and FqD2n (these notations are introduced in the next section) are
not isomorphic, so that one is no longer working over a group algebra. Some recent
relevant works on twisted group algebras are [37] and [26]. In [26], the authors study
right ideals of twisted group algebras, endowing them with a natural distance and
thus studying them as codes; they show that all perfect linear codes are twisted group
codes. In [37], the authors use twisted dihedral group rings as a platform for a public
key protocol as a non-commutative variation of the Diffie-Hellman protocol. This
protocol has a similar platform to the one in [24], but with the twisted multiplication
and 2-cocycle defined differently. The authors show in [24] that the twisted group
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algebra platforms are structurally different.

Group algebras have found mention in some other proposed public key cryptographic
schemes. In [49], the authors construct a key exchange protocol based on the discrete
logarithm problem in the semigroup Mat3(F7[S5]) of 3× 3 matrices over the group
ring F7[S5], where S5 is the group of permutations on five symbols. In [68], an attack
was devised by showing that Mat3(F7[S5]) embeds into Mat360(F7), for which the
discrete logarithm problem can then be solved using the method in [60] adapted
to singular matrices. Another attack [28] on the same system uses the fact that
the algebra F7[S5] is semisimple, and so by Maschke’s theorem it is isomorphic to a
direct sum of matrix algebras over F7. Some other protocols using related methods
have been proposed in [56] and [58].

The authors of [24] assert that since Maschke’s Theorem is valid also for twisted
group algebras, a similar attack might break the underlying problem of their system.
To resolve this they choose q such that the twisted group algebra is not semisimple.
Further, they assert that the general methods of cryptanalysis in [85] and [86],
which require the construction of bases over some vector spaces, do not apply to
their system. This is attributed to the facts that the twisted group algebra is not
a group under the twisted multiplication and that there is an added dimension of
non-commutativity with the twisted multiplication.

The security of the protocol in [24] relies on a newly introduced algorithmic assump-
tion, which the authors call Dihedral Product Decomposition (DPD) Assumption.
Under this assumption, the authors prove that their protocol is session-key secure
in the authenticated-links adversarial model of Canetti and Krawczyk [14]. The
underlying algorithmic problem can be seen as a special form of the decomposi-
tion problem over the multiplicative monoid of an algebra A: given (x, y) ∈ A and
S ⊆ G, the problem is to find z1, z2 ∈ S such that y = z1xz2.

The Dihedral Product Decomposition Problem constitutes finding (z1, z2) given
z1xz2 and x in the platform, where z1 and z2 lie in specific predefined subalgebras of
Fα
qD2n. It is therefore a more restricted version of the general decomposition prob-

lem in the platform. The authors claim that the protocol proposed is quantum-safe,
with justification based on the fact that the decomposition problem is a general-
ization of the conjugacy search problem, which is believed to be difficult even for
quantum computers, in certain platform groups.

Summary of Contributions

In this chapter, we provide a full cryptanalysis of the key exchange system in [24]
by providing a classical polynomial time algebraic solution to the underlying DPD
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Problem. We provide a heuristic argument to show that our attack algorithm has
a high success rate, and verify this experimentally for the parameters proposed by
the authors. We also show that the underlying DPD problem may be formulated as
a semigroup action problem [58], with multiplication in the multiplicative monoid
of a twisted dihedral group algebra.

This chapter is structured as follows. In Section 4.2 we describe the structure and
some properties of the underlying platform, viz. the twisted group algebra Fα

qD2n,
closely following the results of [24]. In Section 4.3, we describe the key exchange
protocol proposed in [24] and state the DPD problem, which forms the basis of its
security assumption. We show that despite the use of a non-commutative structure,
this algorithmic problem is equivalent to a commutative semigroup action problem.
In Section 4.4, we present some background definitions and results on circulant
matrices, which are needed for our reduction and cryptanalysis. In Section 4.5,
we describe an algebraic reduction of the DPD problem to a set of simultaneous
equations over Fq and show that in a majority of cases, they can be solved by linear
algebra in polynomial time. Using these results, we provide a polynomial time
algorithm which performs the cryptanalysis of the system of [24].

The material in this chapter has been adapted from the preprint [99] authored by
me.

Notation Throughout, we let F denote a field, G denote a finite group and Fq

denote the finite field with q elements, where q is a power of a prime. Also let
F∗
q = Fq \ {0}. We denote by D2n the dihedral group of size 2n.

4.2 Structure of the Platform

Definition 4.1 (Group Algebra). Let G be a group. The group algebra F[G]
is the set of the formal sums

∑
g∈G

agg, with ag ∈ F, g ∈ G. Addition is defined

componentwise:
∑
g∈G

agg +
∑
g∈G

bgg :=
∑
g∈G

(ag + bg)g. Multiplication is defined as∑
g∈G

agg ·
∑
g∈G

bgg :=
∑
g∈G

∑
h∈G

(agbh)gh =
∑
k∈G

∑
g∈G, h∈G:gh=k

agbhk.

Clearly, F[G] is an algebra over F with dimension |G|. If G is non-commutative, so is
F[G]. In [37], the authors apply the structure of twisted group algebra to construct
a public-key exchange system. The multiplication operation in these twisted group
algebras is defined using the concept of 2-cocycles.

Definition 4.2 (2-Cocycle). A map α : G×G→ F∗ is called a 2-cocycle of G if
α(1, 1) = 1 and for all g, h, k ∈ G we have α(g, hk)α(h, k) = α(gh, k)α(g, h).
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Definition 4.3 (Twisted Group Algebra). Let α be a 2-cocycle of G. The
twisted group algebra FαG is the set of all formal sums

∑
g∈G

agg, where ag ∈ F,

with the following twisted multiplication: g · h = α(g, h)gh, for g, h ∈ G. The
multiplication rule extends linearly to all elements of the algebra:

(
∑
g∈G

agg) · (
∑
h∈G

bhh) =
∑
g∈G

∑
h∈G

agbhα(g, h)gh.

Addition is given componentwise as in Definition 4.1.

We note that the associativity of a twisted group algebra follows from the condition
on α being a 2-cocycle. In fact, it is an if and only if condition.

Remark 4.1. Throughout the rest of the paper, we will be concerned with twisted
group algebras, and so it is understood that the product (

∑
g∈G

agg) ·(
∑
h∈G

ahh) denotes

twisted multiplication. Further, we will usually omit the · symbol, so that multi-
plication in the group G and in the twisted group algebra are not differentiated by
operation notation. To avoid confusion we ensure that the symbols used for elements
of the group and group algebra do not intersect.

Denote the set of all 2-cocycles of G into Fq by Z
2(G,F∗

q). For α, β ∈ Z2(G,F∗
q), one

may define the cocycle αβ ∈ Z2(G,F∗
q) by αβ(g, h) = α(g, h)β(g, h) for all g, h ∈ G.

With this operation, Z2(G,F∗
q) becomes a multiplicative abelian group.

Definition 4.4 (Adjunct). For an element a =
∑
g∈G

agg ∈ FαG we define its adjunct

as â :=
∑
g∈G

agα(g, g
−1)g−1.

4.2.1 A twisted dihedral group algebra

For the rest of this paper, we set F = Fq and G = D2n, where

D2n = ⟨x, y : xn = y2 = 1, yxy−1 = x−1⟩

is the dihedral group of order 2n. Further, we let Cn = ⟨xi⟩ be the cyclic subgroup
of D2n generated by x and α be a 2-cocycle of D2n.

The following lemma from [24] can be verified in a straightforward manner.

Lemma 4.1 ([24]). We have

1. Fα
qD2n is a free Fα

qCn-module with basis {1, y}. Therefore Fα
qD2n = Fα

qCn ⊕
Fα
qCny as a direct sum of Fq-vector spaces.
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2. Fα
qCny ∼= Fα

qCn as Fα
qCn-modules.

3. For a ∈ Fα
qCny, ab ∈ Fα

qCn if b ∈ Fα
qCny and ab ∈ Fα

qCny if b ∈ Fα
qCn.

4. If a ∈ Fα
qCn, then â ∈ Fα

qCn. Similarly, if a ∈ Fα
qCny, then â ∈ Fα

qCny.

Definition 4.5. 1. For a 2-cocycle α of D2n we define the reversible subspace of
Fα
qCny as the vector subspace

Γα = {a =
n−1∑
i=0

aix
iy ∈ Fα

qCny | ai = an−i for i = 1, . . . , n− 1}.

2. Define a map ψ : Fα
qCny → Fα

qCn as follows. Given a =
n−1∑
i=0

aix
iy ∈ Fα

qCny we

define ψ(a) =
n−1∑
i=0

aix
i ∈ Fα

qCn. Clearly, ψ is an Fq-linear isomorphism.

In this paper, we will refer to an element
n−1∑
i=1

aix
iy of the reversible subspace Γα as

a reversible element of Fα
qCny and to the corresponding vector (a0, . . . , an−1) ∈ Fqn

as a reversible vector.

Lemma 4.2 ([24]). Let α be a 2-cocycle of D2n. Then we have

1. If
α(xi, xj−i) = α(xj−i, xi) (4.1)

for all i, j ∈ {0, . . . , n− 1}, then ab = ba for a, b ∈ Fα
qCn.

2. If

α(xi−jy, xi−jy)α(xiy, xi−jy) = α(xn−iy, xn−iy)α(xj−iy, xn−iy) (4.2)

for all i, j ∈ {0, . . . , n− 1}, then ab̂ = bâ for a, b ∈ Γα.

The following lemma provides an explicit construction of the 2-cocycle that will be
used throughout in the cryptographic construction of [24].

Lemma 4.3 ([24]). Let λ ∈ F∗
q = Fq \ {0}. The map αλ : D2n ×D2n → F∗

q defined
by

αλ(g, h) = λ for g = xiy, h = xjy with i, j ∈ {0, . . . , n− 1} and
αλ(g, h) = 1 otherwise (4.3)

is a 2-cocycle. Further, αλ satisfies the two conditions (4.1) and (4.2).
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Proof. By definition, αλ(1, 1) = 1. Thus one only needs to verify that
αλ(g, h)αλ(gh, k) = αλ(g, hk)αλ(h, k) for all g, h, k ∈ D2n. Write h = xj1yk1 and
k = xj2yk2 with i, j1, j2 ∈ {0, . . . , n − 1}. The condition may then be directly veri-
fied separately in a straightforward way for the two possible cases g = xi and g = xiy.
The fact that αλ satisfies conditions (4.1) and (4.2) follows from the definition.

Lemma 4.4 ([24]). FqD2n and Fq
αλD2n are isomorphic if and only if λ is a square

in F∗
q, i.e. if and only if λ(q−1)/2 = 1.

Lemma 4.5 ([24]). If λ1, λ2 are not squares in F∗
q, then Fq

αλ1D2n and Fq
αλ2D2n are

isomorphic.

From Lemma 4.2 we thus have that for the choice α = αλ of 2-cocycle, the mul-
tiplicative ring of Fα

qCn is commutative, and that ab̂ = bâ for all a, b ∈ Γα. The
form (4.3) of α = αλ is adopted throughout for the cryptosystem in [24] and thus
we restrict our study to this cocycle. Thus, henceforth we take α = αλ.

4.3 The key exchange protocol

Having described the relevant structural properties of the underlying platform, we
now describe the key exchange protocol in [24]. This uses two-sided multiplications
in Fα

qD2n.

4.3.1 Public parameters

1. A number m ∈ N and a prime p > 2 with p | 2n and set q = pm.

2. A 2-cocycle α = αλ for a non-square λ in F∗
q. This ensures that the platform

Fα
qD2n is not isomorphic to FqD2n.

3. An element h = h1 + h2 for a random 0 ̸= h1 ∈ Fα
qCn and a random 0 ̸= h2 ∈

Fα
qCny. (Clearly, since h is public, so are h1 and h2.)

Protocol 4.1 describes the key exchange protocol of [24].

Protocol 4.1.

1. Alice chooses a secret pair (s1, t1) ∈ Fα
qCn × Γα, and sends pkA = s1ht1 to

Bob.

2. Bob chooses a secret pair (s2, t2) ∈ Fα
qCn×Γα and sends pkB = s2ht2 to Alice.

3. Alice computes KA = s1 pkB t̂1,

4. Bob computes KB = s2 pkA t̂2
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5. The shared key is K = KA = KB

The authors’ proposed values for parameters q and n are q = n = 19, q = n = 23,
q = n = 31, q = n = 41.

4.3.2 Correctness

It is easy to show that within an uncorrupted session, both Alice and Bob establish
the same key. Indeed, because of the choice of α = αλ, we have sisj = sjsi in Fα

qCn

and tit̂j = tj t̂i in Fα
qCny for i, j ∈ {1, 2}, so

KA = s1 pkB t̂1 = s1s2ht2t̂1 = s2s1ht1t̂2 = s2 pkA t̂2 = KB.

4.3.3 Security Assumption

The security of the protocol depends on the assumption of the difficulty of the
following algorithmic problem.

Definition 4.6 (Dihedral Product Decomposition (DPD) Problem). Let
(s, t) ∈ Fα

qCn×Γαλ
be a secret key. Given a public element h = h1+h2 ∈ Fα

qD2n, h1 ∈
Fα
qCn, h2 ∈ Fα

qCny, and a public key pk = sht, the DPD problem requires an

adversary to compute (s̃, t̃) ∈ Fα
qCn × Γα such that pk = s̃ht̃.

Let (s̃, t̃) be the output of an adversary A attempting to solve the DPD problem for
Fα
qD2n. The authors define A’s advantage DPDadv[A, Fα

qD2n] in solving the DPD

problem as the probability that s̃ht̃ = sht.

Definition 4.7 (DPD Assumption). The DPD assumption is said to hold for
Fα
qD2n if for all efficient adversaries A the quantity DPDadv[A, Fα

qD2n] is negligible.

In Section 4.5, we provide a cryptanalysis of Protocol 4.1 by solving the DPD prob-
lem. We show that in most cases, a polynomial time solution is possible, and so the
DPD assumption does not hold. For our method of cryptanalysis, we need some
prerequisites on circulant matrices, which we provide in the next section. However,
we first show below how the DPD problem can be formulated as a special case of a
commutative semigroup action problem, in the framework introduced in [58].

DPD problem as a commutative semigroup action

The authors of [24] assert that given a fixed h ∈ Fα
qD2n, the set of keys {sht | (s, t) ∈

Fα
qCn×Γα} is not even a semigroup under the twisted algebra multiplication. From

this observation, they claim that their system is immune to the quantum cycle-
finding algorithm of Shor [90] which is known to solve the hidden subgroup problem
in abelian groups.
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Further, the security of the system of [24] is based on the presence of a non-
commutative multiplication in the twisted group algebra. However, we now show
that the DPD problem can be formulated as a commutative semigroup action prob-
lem, and so any classical or quantum solution to the latter also applies to the former.
In [64], a Pollard-rho type square root algorithm was provided to solve an abelian
group action problem, whereas the possibility for a modification to the commutative
semigroup case was left open.

As observed before, the cocycle α = αλ satisfies conditions (4.1) and (4.2). Thus,
ab = ba for a, b ∈ Fα

qCn and ab̂ = bâ for a, b ∈ Γα. In particular, Fα
qCn is a

commutative subalgebra of Fα
qD2n. Recall the Fq-linear isomorphism ψ : Fα

qCny →

Fα
qCn given by ψ(a) =

n−1∑
i=0

aix
i ∈ Fα

qCn for a =
n−1∑
i=0

aix
iy ∈ Fα

qCny. Below, we

show that ψ(Γα) is a commutative semigroup under the multiplication defined by
ψ(t) ⋆ ψ(t′) := tt′ ∈ ψ(Γα).

Lemma 4.6. Let α be a cocycle on Fα
qD2n such that for all i and j, α(xiy, xjy) =

α(xjy, xiy) and α(xky, xm−ky) = α(xn−ky, xk−my) where all exponents are taken
modulo n. Then, ψ(Γα) is a commutative semigroup under ⋆.

Proof. The associativity of the operation follows from the definition of a cocycle.

Let a =
n−1∑
i=0

aix
iy, b =

n−1∑
i=0

bix
iy ∈ Γα, We have

ψ(a) ⋆ ψ(b) = ab =

(
n−1∑
i=0

aix
iy

)(
n−1∑
j=0

bjx
jy

)

=
n−1∑
m=0

(
n−1∑
k=0

akbm−kα(x
ky, xm−ky)

)
xm

Since a, b ∈ Γα, an−k = ak and bk−m = bm−k for each m, k, so, the applying the

assumption on α,
n−1∑
k=0

akbm−kα(x
ky, xm−ky) =

n−1∑
k=0

an−kbk−mα(x
n−ky, xk−my), i.e. the

coefficients of xm and xn−m are equal, so ψ(a) ⋆ ϕ(b) = ab ∈ ψ(Γα). Further, since
for all i, j, α(xiy, xjy) = α(xjy, xiy), we have ψ(a) ⋆ ψ(b) = ab = ba = ψ(b) ⋆ ϕ(a),
so the semigroup is commutative.

Clearly, the choice of α = αλ in the protocol satisfies the properties in Lemma 4.6.
We can now look at the key exchange in Protocol 4.1 as an instance of a semigroup
action problem, introduced in [58].
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Definition 4.8 (Semigroup Action Problem). Let S be any semigroup acting
on a set X

S ×X → X

(s, x) 7→ s · x

Given an element y = s · x ∈ X, where x ∈ X is known and s ∈ S is a secret, the
semigroup action problem is to find some s̃ ∈ S such that s̃ · x = y.

Proposition 4.1. The commutative semigroup Fα
qCn × ψ(Γα) acts on Fα

qD2n as
follows

(Fα
qCn × ψ(Γα))× Fα

qD2n → Fα
qD2n

(s, ψ(t)) · h = sht (4.4)

Proof. Clearly, (1, 1) · h = h for all h ∈ Fα
qD2n. Further,

(s, ψ(t))((s′, ψ(t′)) · h) = ss′ht′t = ss′ht = (ss′, tt′) · h = (ss′, ψ(t) ⋆ ψ(t′)) · h.

Lemma 4.7. The DPD problem is equivalent to the semigroup action problem for
the commutative semigroup action (4.4).

Proof. Clearly, t and ψ(t) can easily be read from each other without any significant
computational cost. Suppose that given public element h and public key pk, the
adversary can find s, t such that sht = pk. Then, (s, ψ(t)) is a solution to the
SAP (4.4). Conversely, any solution (s, ψ(t)) of the SAP (4.4) gives the solution
(s, t) of the DPD problem.

The next section highlights some prerequisites on circulant matrices which will be
used in the cryptanalysis of the system in Section 4.5.

4.4 Circulant Matrices

Definition 4.9. A matrix over Fq of the form


c0 cn−1 . . . c1
c1 c0 . . . c2
...

...
. . .

...
cn−1 cn−2 . . . c0

 with ci ∈ Fq,

is called circulant. Given a vector c = (c0, c1, . . . , cn−1)
T ∈ Fqn , we use the notation
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Mc to denote the circulant matrix Mc :=


c0 cn−1 . . . c1
c1 c0 . . . c2
...

...
. . .

...
cn−1 cn−2 . . . c0

.

Definition 4.10. Given vectors b = (b0, b1, . . . , bn−1)
T ∈ Fqn , c =

(c0, c1, . . . , cn−1)
T ∈ Fqn , define, for 0 ≤ ℓ ≤ n− 1 the constants

zℓ(b, c) =
∑

i+j=ℓ (mod n)

bicj =
(
cℓ, cℓ−1, . . . , cℓ+1

)
·


b0
b1
...

bn−1

 , 0 ≤ ℓ ≤ n− 1.

Also define the vector zb,c = (z0(b, c), . . . , zℓ(b, c), . . . , zn−1(b, c))
T . In other words,

zb,c =


c0 . . . c1
c1 . . . c2
...

. . .
...

cn−1 . . . c0

 ·


b0
b1
...

bn−1

 =Mc · b.

As in Definition 4.9, denote by Mz(b, c) the circulant matrix Mz(b, c) =
z0(b, c) . . . z1(b, c)
z1(b, c) . . . z2(b, c)

...
. . .

...
zn−1(b, c) . . . z0(b, c)

. The following result is easy to verify by direct compu-

tation.

Lemma 4.8. Mz(b, c) =Mc ·Mb.

4.4.1 Probability of a circulant matrix being invertible

We will require the invertibility of some random circulant matrices over Fq for our
reduction of the system. For this reason, we discuss the criteria for a random
circulant matrix being invertible, and study this probability. We have the following
result from [88].

Proposition 4.2 ([88]). Let xn−1 = fα1
1 (x) . . . fατ

τ (x) be the factorization of xn−1
over Fqm into powers of irreducible factors. The number of invertible circulant

matrices in Matn(Fqm) is equal to
τ∏

i=1

(qmdiαi − qmdi(αi−1)), where di is the degree of

fi(x) in the factorization of xn − 1.
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Note that the number of circulant matrices over Fqm is qmn. As a direct consequence,
the probability of a randomly chosen circulant matrix over Fqm being invertible is

τ∏
i=1

qmdiαi−qmdi(αi−1)

qnm
=

τ∏
i=1

(
1− 1

qmdi

)

It is now easy to see that a lower bound for this quantity is (1 − 1
qm

)n, which is
achieved if xn − 1 splits into distinct linear factors, i.e. τ = n, di = 1, αi = 1.
Similarly, an upper bound is achieved when there is a single factor in the factor-
ization, i.e. τ = 1 and α1 = n, in which case the quantity is (1 − 1

qm
). Note that

this upper bound is achieved when n is a power of the characteristic p of Fqm .
(xn − 1 = (x− 1)n (mod p)). In general, we have the following corollary.

Corollary 4.1. Let e be the largest number such that pe | n. Then the probability
that a randomly chosen n×n circulant matrix over Fq is invertible is at least (1− 1

q
)

n
pe .

If n is a power of p, then the probability is exactly equal to 1− 1
q
.

In [24], the authors deliberately choose the case p | n, so as to avoid having FqmD2n

semisimple. In fact, in all of their proposed parameters, one has n = p = q, and so,
the probability 1− 1

q
applies for a random circulant matrix being invertible.

4.5 Cryptanalysis

Note that the adversary is given an equation of the form sht = γ over Fα
qD2n, where

s =
n−1∑
i=0

aix
i ∈ Fα

qCn, t =
n−1∑
i=0

bix
iy ∈ Γα ⊆ Fq

αλD2n (4.5)

are unknown, and h =
n−1∑
i=0

cix
i +

n−1∑
i=0

dix
iy is known. Since t ∈ Γα, the coefficients in

t satisfy bk = bn−k for k = 1, . . . , n− 1. We write

γ =
n−1∑
i=0

vix
i +

n−1∑
i=0

wix
iy
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for known constants vi, wi. Substituting the above expansions into the equation
sht = γ, we have(

n−1∑
i=0

aix
i

)(
n−1∑
i=0

cix
i +

n−1∑
i=0

dix
iy

)(
n−1∑
i=0

bix
iy

)
=

n−1∑
i=0

vix
i +

n−1∑
i=0

wix
iy

=⇒

(
n−1∑
i,j=0

aicjx
i+j +

n−1∑
i,j=0

aidjx
i+jy

)(
n−1∑
k=0

bkx
ky

)
=

n−1∑
i=0

vix
i +

n−1∑
i=0

wix
iy

=⇒
n−1∑

i,j,k=0

aicjbkx
i+j+ky +

n−1∑
i,j,k=0

aidjbkλx
i+j+k =

n−1∑
i=0

vix
i +

n−1∑
i=0

wix
iy

Comparing coefficients, we have the following two equations

n−1∑
i,j,k=0

aicjbkx
i+j+ky =

n−1∑
i=0

wix
iy, (4.6)

λ
n−1∑

i,j,k=0

aidjbkx
i+j+k =

n−1∑
i=0

vix
i (4.7)

Define vectors a = (a0, . . . , an−1)
T , b = (b0, . . . , bn−1)

T , c = (c0, . . . , cn−1)
T , d =

(d0, . . . , dn−1)
T , w = (w0, . . . , wn−1)

T , v = (v0, . . . , vn−1)
T in Fqn . Here, b is a

reversible vector, i.e. bi = bn−i for each i = 1, . . . , n − 1. The vectors a and b are
unknown to the adversary, while c, d, v, and w are publicly known.

4.5.1 Reduction to matrix equations

In the below discussion, all subscripts are taken modulo n. The following lemma
shows that Equation (4.6) can be reduced to a matrix equation over Fq.

Lemma 4.9. Equation (4.6) is equivalent to the matrix equation Mz(b, c) · a = w
over Fq.

Proof. Equating the coefficients of the basis vectors xiy in Equation (4.6), we have

wi =
n−1∑
ℓ=0

∑
(j,k)|j+k=ℓ (mod n)

cjbkai−ℓ

=
∑
ℓ=0

∑
(j,k)|j+k=i−ℓ (mod n)

cjbkaℓ

=
(
zi(b, c) zi−1(b, c) . . . z0(b, c) zn−1(b, c) . . . zi+1(b, c)

)
· a
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Thus, we can rewrite Equation (4.6) equivalently as the system

w0 =
(
z0(b, c) zn−1(b, c) . . . z1(b, c)

)
· a

w1 =
(
z1(b, c) z0(b, c) . . . z2(b, c)

)
· a

...

wn−1 =
(
zn−1(b, c) zn−2(b, c) . . . z0(b, c)

)
· a

In other words, Mz(b, c) · a = w.

One may similarly rewrite Equation (4.7) as above, so that we have the following
lemma.

Lemma 4.10. Equation (4.7) is equivalent to the matrix equation λMz(b,d)·a = v
over Fq.

Combining the results of Lemmas 4.9 and 4.10, if the vectors b,c and d are given,
then a is a simultaneous solution to the matrix equations Mz(b, c) · a = w and
λMz(b,d) · a = v. However, a priori the vector b is unknown to the adversary. If
we can find b such that this system of equations has a simultaneous solution, then
we are done with reducing the DPD problem to a solving a single system of linear
equations, which can be done in polynomial time. Summarizing this discussion, we
have the following result.

Proposition 4.3. Suppose that a vector b = (b0, . . . , bn−1) is such that the system
of simultaneous equations λMz(b,d)a = v and Mz(b, c)a = w has a simultaneous

solution a = (a0, . . . , an−1). Then, s =
n−1∑
i=0

aix
i, t =

n−1∑
i=0

bix
iy is a solution of the

equation sht = γ.

Now, for an adversary, the vectors a and b are both unknown. We will show below
that in most cases, it suffices for the adversary to fix a suitable value for b and then
proceed to solve any one of the linear equations in Lemmas 4.9 and 4.10 for a. More
precisely, we show that if Mc and Md are invertible, then a solution is possible for
any randomly chosen b ∈ Γα for which the correponding circulant matrix Mb is
invertible. Since the values arise from a legitimate public key, we know that there
exists a vector b ∈ Γα such that the equations λMz(b,d)a = v and Mz(b, c)a = w
have a simultaneous solution a.

Proposition 4.4. Let the vectors c and d be such that Mc and Md are invertible.
Assume that at least one simultaneous solution (a,b) exists to the matrix equations
λMz(b,d)a = v and Mz(b, c)a = w. Then, for any randomly chosen b ∈ Γα such
that Mb is invertible, the equations λMz(b,d)a = v and Mz(b, c)a = w have a
simultaneous solution a computable in polynomial time.
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Proof. Here, b, c, and d are invertible, and thus so are Mz(b,d) = Md ·Mb and
Mz(b, c) = Mc ·Mb. Now, we know that a solution (a,b) exists, and so for some
vectors a and b we have

λMdMba = v, McMba = w, i.e. λ−1M−1
d v =Mba, M

−1
c w =Mba

So, independently of a and b we necessarily have

λ−1M−1
d v =M−1

c w (4.8)

Now let b be any random vector such that Mb is invertible. Multiplying equation
(4.8) by M−1

b , we get

λ−1M−1
b M−1

d v =M−1
b M−1

c w

=⇒ λ−1Mz(b,d)
−1v =Mz(b, c)

−1w

Setting a := λ−1Mz(b,d)
−1Mv = Mz(b, c)

−1w, we get a as the simultaneous solu-
tion λMz(b,d)a = v and Mz(b, c)a = w.

4.5.2 The algorithm for cryptanalysis

Before describing the cryptanalysis algorithm, we state the following assumption,
which we make for the sake of our complexity argument. We do not have a proof of it,
but experimental evidence strongly suggests that it holds to a good approximation.

Assumption 1. Let P1 denote the probability of a uniformly sampled n×n circulant
matrix over Fq being invertible and P2 denote the probability that the circulant
matrix corresponding to a uniformly sampled reversible vector is invertible. Then
P1 = P2. In other words, the probability distribution corresponding to invertibility
remains the same when restricted to matrices corresponding to reversible vectors.

We have the following result.

Corollary 4.2. Let Mc and Md be invertible and γ be a legitimate public key. Let
e denote the largest power of p dividing n. Further, assume that Assumption 1
holds. Then, the equation sht = γ in the unknowns s ∈ Fα

qCn, t ∈ Γα can be solved

for a legitimate secret key (s, t) in an expected O
((

1− 1
q

)−n/pe
)

steps. If n is a

power of p then we have a constant time solution.

Proof. Since γ is a legitimate public key, a least one simultaneous solution (a,b)
exists (the one corresponding to the initial secret key) to the matrix equations
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λMz(b,d)a = v and Mz(b, c)a = w. Now, from Corollary 4.1, a vector b ∈ Fqn

such that b is invertible can be found in an expected

⌈
1

(1− 1
q )

n/pe

⌉
number of steps.

For the solution of the DPD problem, one further requires that the vector b satisfies
bi = bn−1 for 1 ≤ i ≤ n − 1, i.e. that b ∈ Γα. From Assumption 1, we may assume
the same number of expected steps. Thus, by Proposition 4.4, we can set b to be any

vector in Γα such that Mb is invertible. If n is a power of p, this quantity is

⌈
1

1− 1
q

⌉
,

which is decreasing in q, with the smallest value being 2, for q = 2. Thus, in this case
the time complexity is O(1). This is also confirmed by experimental results, where
randomly chosen symmetric vectors b ∈ Γα were invertible in almost all trials. Once
such a vector b is found, one can compute a = λ−1Mz(b,d)

−1Mv = Mz(b, c)
−1w.

By Proposition 4.3, this gives a solution to the DPD problem sht = γ.

We now state an algorithm to cryptanalyse the key exchange. Its correctness follows
from the above discussion. All the parameters suggested for Protocol 4.1 by the
authors of [24] use n = p, so this algorithm provides a constant-time cryptanalysis.

Algorithm 4.1: Cryptanalysis of Key Exchange over Fα
qD2n

Input Parameter λ and the cocycle α = αλ, public element

h =
n−1∑
i=0

cix
i +

n−1∑
i=0

dix
iy, public key γ =

n−1∑
i=0

vix
i +

n−1∑
i=0

wix
iy.

Output A solution (s, t) ∈ Fα
qCn × Γα satisfying sht = γ. This tuple is a

solution to the DPD problem.
1: Define vectors in Fqn : c := (c0, . . . , cn−1), d := (d0, . . . , dn−1),

v := (v0, . . . , vn−1), w := (w0, . . . , wn−1).
2: If Mc or Md is not invertible

Return Fail
3: Pick a vector b = (b0, . . . , bn−1)← Γα at random.
4: If Mb is not invertible, repeat Step (3). If it is invertible, go to Step (5).
5: Compute a = λ−1Mz(b, c)

−1w (=M−1
b M−1

d v).
6: With a = (a0, . . . , an−1), set s =

∑n−1
i=0 aix

i and t =
∑n−1

i=0 bix
iy.

7: Return (s, t).

Remark 4.2. The solution (s, t) to the DPD returned by Algorithm 4.1 and ref-
erenced in Corollary 4.2 is a legitimate secret key, but not necessarily the same
as the originally chosen secret key. In fact, as is clear from the discussion above,

t =
n−1∑
i=0

bix
iy ∈ Γα can be selected at random, and a solution for s ∈ Fα

qCn is found

long as Mb is invertible.
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Now, since c and d are randomly chosen in Fqn , the circulant matrices Mc and Md

are invertible with high probability. The probability that the algorithm fails is the
probability that at least one of them is not invertible, which is given by 1− (1− 1

q
)2.

Clearly this quantity shrinks with increasing values of q and n. In [24] the smallest
values of these parameters are q = n = 19, for which this probability is ≈ 0.1. Thus,
Algorithm 4.1 succeeds in cryptanalyzing the system with a probability of at least
90 percent.

An immediate corollary of the above argument is that the two-sided multiplication
action

(Fα
qCn × Γα)× Fα

qD2n → Fα
qD2n

(s, t) · h 7→ sht, s ∈ Fα
qCn, t ∈ Γα

is far from being injective, contrary to the assumption of the authors. In fact, for
most values of t and γ ∈ Fα

qD2n, there is a unique pre-image s ∈ Fα
qCn such that

sht = γ. Thus, the probability that random choosing yields the right solution is not
1/|Fα

qCn × Γα|, as claimed by the authors. The real probability is greater than or
equal to probability that the matricesMc andMd are invertible and that the correct
value of s corresponding to t is chosen, which is ≈ 1/|Fα

qCn| (we already saw that
the probability of the matrices being invertible is very close to 1). From this, one
also sees that the run time of an exhaustive search would be linear in |Fα

qCn| = pnm,

rather than in |Fα
qCn × Γα| = pnmpm⌊n+1

2
⌋, as claimed by the authors of [24].

4.6 Examples

In this section, we present some examples generated by computer search, using the
algebra software package SageMath [87]. For the structure of the twisted group
algebra and the generation of the keys, we made use of the original source code of
the authors. Our entire working code including the cryptanalysis can be found at:
https://github.com/simran-tinani/Cryptanalysis-of-twisted-group-algebra-system

In the following examples, an element
n−1∑
i=0

aix
i+

n−1∑
i=0

bix
iy of Fα

qD2n is denoted by the

2n-tuple (a0, . . . , an−1, b0, . . . , bn−1). We use the notations above.

Example 4.1. For parameters n = 23, q = 23, λ = 11, consider a randomly gener-
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ated public element h, and secret key (s, t) ∈ Fα
qCn × Γα.

h =(19, 9, 4, 14, 6, 13, 21, 18, 18, 10, 9, 2, 5, 15, 13, 22, 18, 13, 16, 20, 11, 2, 11, 6, 18, 7, 17, 8, 20, 20, 17, 7,

15, 1, 11, 9, 17, 4, 11, 16, 5, 17, 19, 18, 19, 20),

s =(20, 17, 20, 22, 18, 18, 11, 12, 2, 3, 18, 11, 2, 18, 3, 14, 10, 2, 13, 14, 3, 9, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

t =(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 0, 14, 3, 2, 19, 4, 15, 1, 21, 3, 6, 6, 3, 21, 1, 15,

4, 19, 2, 3, 14, 0)

Using the method in Section 4.5, the program computed the solution (s̃, t̃) to the
DPD, where

s̃ =(13, 16, 5, 1, 21, 1, 2, 8, 17, 2, 12, 11, 4, 0, 20, 7, 19, 16, 3, 14, 22, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0)

t̃ =(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 2, 17, 16, 12, 16, 12, 10, 6, 8, 3, 0, 0, 3, 8, 6, 10,

12, 16, 12, 16, 17, 2)

It was verified that sht = s̃ht̃, so a legitimate private key was recovered.

Example 4.2. For parameters n = 19, q = 19, λ = 18, and using the notations above,
consider the randomly generated public element h, and secret key (s, t) ∈ Fα

qCn×Γα.

h =(14, 5, 13, 4, 10, 12, 8, 6, 17, 18, 15, 1, 14, 14, 15, 15, 13, 4, 6, 7, 7, 11, 13, 4, 11, 12, 3, 11, 18, 8, 3, 3, 6,

11, 17, 1, 7, 10),

s =(18, 14, 1, 0, 15, 5, 7, 0, 1, 7, 10, 5, 9, 18, 2, 12, 17, 12, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

t =(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 17, 4, 10, 18, 5, 5, 9, 15, 18, 18, 15, 9, 5, 5, 18, 10, 4, 17)

Using the method in Section 4.5, the program computed the solution (s̃, t̃) to the
DPD, where

s̃ =(12, 6, 4, 10, 12, 4, 5, 7, 0, 15, 8, 7, 1, 0, 2, 15, 6, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

t̃ =(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 13, 11, 10, 3, 3, 1, 1, 3, 16, 16, 3, 1, 1, 3, 3, 10, 11, 13)

It was verified that sht = s̃ht̃, so a legitimate private key was recovered.

Example 4.3. For parameters n = 41, q = 41, λ = 29, and using the notations above,
consider the randomly generated public element h, and secret key (s, t) ∈ Fα

qCn×Γα.

h =(33, 2, 29, 20, 9, 5, 36, 13, 26, 15, 38, 27, 33, 4, 20, 4, 14, 23, 12, 0, 35, 5, 38, 40, 1, 6, 16, 26, 9, 0, 29, 6, 32, 26,

14, 32, 18, 29, 13, 35, 7, 8, 38, 26, 20, 25, 24, 18, 30, 28, 22, 8, 21, 1, 33, 29, 2, 22, 25, 6, 13, 24, 18, 26, 30, 38, 3,

1, 39, 11, 15, 10, 9, 16, 3, 7, 36, 26, 22, 6, 0, 15),

s =(24, 2, 12, 32, 10, 2, 27, 1, 5, 7, 17, 32, 7, 24, 28, 26, 17, 8, 32, 18, 13, 8, 19, 17, 0, 11, 33, 17, 27, 1, 36, 3, 33, 9, 30, 34,

22, 26, 21, 5, 29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

t =(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 8, 18, 11, 31,

9, 34, 3, 16, 39, 32, 0, 15, 31, 3, 26, 0, 31, 39, 4, 40, 40, 4, 39, 31, 0, 26, 3, 31, 15, 0, 32, 39, 16, 3, 34, 9, 31, 11, 18, 8)

Using the method in Section 4.5, the program computed the solution (s̃, t̃) to the
DPD, where
s̃ =(39, 9, 4, 23, 8, 8, 10, 40, 31, 27, 22, 36, 11, 14, 35, 28, 25, 0, 0, 10, 16, 33, 24, 6, 33, 17, 15, 13, 17, 10, 18, 31, 33, 16, 13,

28, 2, 36, 37, 13, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

t̃ =(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 6, 8, 35, 23, 22,

39, 12, 22, 36, 34, 1, 29, 8, 16, 40, 29, 16, 24, 14, 31, 31, 14, 24, 16, 29, 40, 16, 8, 29, 1, 34, 36, 22, 12, 39, 22, 23, 35, 8, 6)

It was verified that sht = s̃ht̃, so a legitimate private key was recovered.
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Clearly, in each of the above examples, s ̸= s̃ and t ̸= t̃, but sht = s̃ht̃. Thus, each
of these examples also serves as a counterexample to the injectivity of the two-sided
action.
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5.1 Introduction

Let A be an alphabet and A∗ denote the set of all finite-length words in A and
An denote the set of all words up to length n in A. A length n hash function, or
compression function, is a map A∗ → An which takes messages of arbitrary length to
fixed-length message digests. A hash function h : A∗ → An is called a cryptographic
hash function if it satisfies the following properties:

• Collision-resistance: it is computationally infeasible to find a pair x, x′ of dis-
tinct messages such that h(x) = h(x′).

• Second pre-image resistance: given a message x, it is computationally infeasi-
ble to find another message x′ ̸= x such that h(x) = h(x′).

• One-wayness: given a hash value y ∈ An it is computationally infeasible to
find a pre-image x ∈ A such that h(x) = y.

Cryptographic hash functions are also often required to exhibit the avalanche effect,
under which a small modification in the message text causes a big change in the
hash. This prevents the hash value from leaking information about the message
string, and ensures no visible correlation between the hashes of related strings. A
hash function that does not exhibit this property is called mallaeble.

Several widely used hash functions, including the NIST-standardized SHA (Secure
Hash Algorithms) functions [73], are built from block ciphers. While the state
of the art block cipher-based hash functions have shown considerable resiliency to
attacks, their security is nevertheless heuristic; in other words, it does not reduce
to a well-known difficult mathematical problem. The search for a provably secure
hash function is therefore, at the least, of theoretical interest.

The idea of building hash functions from a group and its corresponding Cayley
graph was introduced in [109]. The generic design of Cayley hash functions has sev-
eral advantages over traditional hash functions. Firstly, their security is equivalent
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to some concise mathematical problem. Cayley hash functions are also inherently
parallelizable, i.e. allow for simultaneous computation of the hash value of different
parts of the message, and recombining these at the end. While the Tillich-Zémor
hash functions are slower than SHA-256, they can be designed to have reasonably
efficient implementations: in [78] it is stated that they can be made faster than
SHA-1. In particular, when fields of characteristic 2 are used, the group law is the
most efficient.

There may also be other disadvantages of Cayley hash functions. By themselves,
such hash functions are inherently mallaeble: given a hash h(m) of an unknown
message m, h(x1||m||x2) = h(x1)h(m)h(x2) for any texts x1, x2. Further, they lack
preimage resistance for small messages. However, in [78], the authors describe a
heuristic modification which seemingly resolves these issues, as well as enhances the
efficiency. Cayley hash functions have a simple, elegant, clear design related to hard
mathematical problems. A very generic description is given below.

Definition 5.1 (Cayley hash function). Let G be a finite group with a set of
generators S and A be an alphabet the same size as S. Given an injective map
π : A → S, one may define the hash value of the message x1x2 . . . xk to be the group
element π(x1)π(x2) . . . π(xk).

Typically, one is concerned only with binary messages, and therefore with two-
generator Cayley hash functions. The common design principle behind the Cayley
hash functions is the performance of a walk on a regular Cayley graph according to
the bits of an input message, the last vertex giving the hash value.

Definition 5.2 (Cayley Graph). LetG be a group and S a subset of elements ofG.
The Cayley graph of CG,S = (V,E) of G with respect to S is defined to have vertices
vg corresponding to each element g ∈ G, and edges (vg1 , vg2) ∈ E ⇐⇒ ∃s ∈ S such
that g2 = g1s. Here, the set S is the set of graph generators.

The security of a Cayley hash function defined on a group G is determined by the
properties of the corresponding graph. More precisely, the difficulty of producing
collisions for such a hash function depends on the difficulty of solving the factoriza-
tion problem in a certain finite non-abelian group.

Definition 5.3 (Factorization problem). Let G be a group with generators S =
{s1, . . . , sk} and L > 0 be a fixed constant. Given g ∈ G, return m1, . . . ,mL and

ℓ ≤ L, with mi ∈ {1, . . . , k} such that
ℓ∏

i=1

smi
= g. The factorization problem for

g = 1 fixed is called the representation problem.

Apart from hash functions, the difficulty of factorization in finite matrix groups has
been used to build some key exchange, encryption and authentication schemes [6,
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7, 9].

Factorization in finite groups is related to the famous conjecture of Babai on the
diameter of Cayley graphs, which states that diameter of any undirected Cayley
graph of non-abelian simple group is polylogarithmic in group size. In other words,
“short” factoriations always exist for finite non-abelian groups, regardless of the
choice of generating set. The conjecture is known to be true for certain groups like
SL2(2,Fp), SL2(2,F2k). However, existing generic proofs for any generating set are
non-constructive. In [108], the following Cayley hash function was defined in the
group G = SL2(Fp):

Definition 5.4 (Zémor Hash Function). Choose the generators A0 =

(
1 1
0 1

)
,

A1 =

(
1 0
1 1

)
of SL2(Fp). For a message m = m1m2 . . .mk ∈ {0, 1}∗ define

H(m1 . . .mk) = Am1 . . . Amk
.

This hash function, given in [108] was attacked for both collisions and preimages in
[97] using the Euclidean algorithm. However, this attack is specific to the generators
A0 and A1. In [77], it is claimed that the system is potentially secure by replacing A0

and A1 by A
2
0 and A

2
1. We define the generalized Zémor hash function as above, but

using generators A0 =

(
1 α
0 1

)
and A1 =

(
1 0
β 1

)
over Fpk . While the generators

A0 and A1 have multiplicative order p, and so one trivially has collisions of length
p with the empty word, we nevertheless also consider the case k > 1 and study the
difficulty of finding non-trivial collisions (i.e. collisions of non-empty words).

The following variant of the above hash function was later proposed in [98].

Definition 5.5 (Tillich-Zémor Hash function). Let n > 0 and p(x) be an ir-

reducible polynomial over F2. Write K = F2[x]/p(x). Consider A0 =

(
x 1
1 0

)
and A1 =

(
x x+ 1
1 1

)
, which are generators of SL2(K). For a message m =

m1m2 . . .mk ∈ {0, 1}∗ define H(m1 . . .mk) = Am1 . . . Amk
(mod p(x)). K =

F2[x]/⟨q(x)⟩ ∼= F2n .

Collisions for this hash function for these set of generators were found in [39]. This
attack uses the structure in hash values of palindromic messages, and a result of
Mesirov-Sweet [62] on the Euclidean algorithm for polynomials x and x+1 in char-
acteristic 2. This attack was extended to recover preimages in [76]. Since current
attacks do not allow controlling of the forms of collisions, and work specifically
for the set of generators A0 and A1, the security is an open problem for general
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parameters.

In [74], the authors provide a new heuristic algorithm for factoring generic gen-
erator sets by reducing them to contain a “trapdoor” matrix. Their algorithm is
subexponential in time, memory, and factorization lengths. This algorithm, how-
ever, does not yield a practical attack on the Tillich-Zémor design with generic
generators for n = 160. In fact, to the best of knowledge till date, the collision and

preimage resistance are recovered by replacing A0 and A1 by B0 =

(
x2 1
1 0

)
and

B1 =

(
x+ 1 1
1 0

)
[79]. We define the generalized Tillich-Zémor hash function as

above, but using generators A0 =

(
α 1
1 0

)
and A1 =

(
β 1
1 0

)
where α, β ∈ Fpk .

It has also been proposed to use LPS Ramanujan graphs [96] to construct Cayley
hash functions. However, these have also been cryptanalyzed [75]. Some other
methods of cryptanalysis for Cayley hash functions are discussed in [77].

Collisions from Triangular and Diagonal Matrices In [79], it is shown that
if one can produce “sufficiently many” messages whose images in the matrix groups
are upper/lower triangular, then one can find collisions of the generalized Zémor
and Tillich-Zémor hash functions.

Proposition 5.1. Let n be such that discrete logarithms can be solved in F∗
2n . Let

D, T up, T low, Lv, Rv ⊂ SL2(F2n) be the subgroups of diagonal, upper and lower
triangular matrices and the subgroup of matrices with left or right eigenvector v. If
an attacker can compute N random elements Mi of one of these subgroups together
with bit sequences mi of length at most L hashing to these matrices, then he can
also find a message m such that HZT (m) = I. The message m has expected size
smaller than NL2n/N in the diagonal case and smaller than NL21+n/N in the other
cases.

In this same work, the authors use random probabilistic search to find pre-images of
upper/lower triangular matrices, and subsequently uses these to produce collisions.
This approach works for any Cayley hash function, and for SL2 groups over any
finite field.

Summary of Contributions

This chapter focuses on devising methods for producing collisions in algebraic hash
functions that may be seen as generalized forms of the well-known Zémor and Tillich-
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Zémor hash functions. In contrast to some of the previous approaches, we attempt
to construct collisions in a structured and deterministic manner.

In Section 5.2, we introduce a method for constructing messages with triangular or
diagonal hashes messages. For this, we extend existing hash values in SL2(Fpk) into
triangular or diagonal form by multiplying with products of the form Am

0 A
n
1 , where

A0 =

(
1 α
0 1

)
and A1 =

(
1 0
β 1

)
denote generators. More precisely, we consider the

following problem.

Problem 5.1. Given a matrix C ∈ SL2(Fpk) formed as product of A0 and A1, find
the conditions under which there exist integers m and n (of size significantly smaller
than pk) such that CAm

0 A
n
1 is upper/lower triangular, or even diagonal. Compute

m and n if they exist.

We also discuss the application of this method to produce collisions, and the feasi-
bility and efficiency thereof. Our method thus provides an alternate deterministic
approach to the method for finding triangular hashes in [79].

In Section 5.3, we consider the generalized Tillich-Zémor hash functions over Fpk

for p ̸= 2, relating the generator matrices to a polynomial recurrence relation, and
derive a closed form for any arbitrary power of the generators. We then provide
conditions for collisions, and a method to maliciously design the system so as to
facilitate easy collisions, in terms of this polynomial recurrence relation.

On simplifying the general criteria, and through experiments, our general conclu-
sion is that it is very difficult in practice to achieve the theoretical collision condi-
tions efficiently, in both the generalized Zémor and the generalized Tillich-Zémor
cases. Therefore, although the techniques are interesting theoretically, in practice
the collision-resistance of the generalized Zémor functions is reinforced.

5.2 Generalized Zémor Hash functions

Definition 5.6 (Generalized Zémor hash functions). Consider the generators

A0 =

(
1 α
0 1

)
and A1 =

(
1 0
β 1

)
in the group SL2(Fpk). For a message m =

m1m2 . . .mk ∈ {0, 1}∗ define the hash value H(m1 . . .mk) = Am1 . . . Amk
.

The Zémor hash function proposed in [108] is a special case of this, with α = 1 = β.
In [77] it was suggested that security is preserved when s20 and s21 are used instead,
these cases correspond to the values α = 2 = β. Thus, the generalized Zémor hash
functions are so far secure.
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Clearly, Am
0 =

(
1 mα
0 1

)
and An

1 =

(
1 0
nβ 1

)
for any integers m and n. A0 and A1

have multiplicative orders p, so trivial collisions of length p with the empty word
always exist. Nevertheless, we study the general case of non-trivial collisions in the
finite field Fpk . In general, one is interested in finding collisions with a significantly
smaller length than the orders, at most, say O(√p).

5.2.1 Euclidean Algorithm Attack for α = β = 1

In this subsection, we describe the attack of [97], which uses the Euclidean algo-
rithm, and explain why it fails if one chooses α ̸= 1, β ̸= 1 in the hash func-
tion design. Consider a matrix X = ( a b

c d ) ∈ SL2(Fp) and suppose that we have
found a non-identity matrix Y = ( A B

C D ) ∈ SL2(Z) that reduces modulo p to X.Let
A0 = ( 1 1

0 1 ), A1 = ( 1 0
1 1 ). Consider the general case with generators Ã0 = Aα

0 = ( 1 α
0 1 ),

Ã1 = Aβ
1 =

(
1 0
β 1

)
.

We write

Y =

(
A B
C D

)
=

(
ai bi
ci di

)
Aαqi

0 A
βqi−1

1 . . . Aαq2
0 Aβq1

1

where

(
a0 b0
c0 d0

)
=

(
A B
C D

)
. Since the matrix X is obtained as a product of Ã0 and

Ã1, there exists an integer n such that

(
an bn
cn dn

)
= Aαpn

0 or

(
an bn
cn dn

)
= Aαpn

0 =

Aβqn
1 . We wish to determine the values of the qi, 1 ≤ i ≤ n for such an n. We have,

for 1 ≤ i ≤ n,

ai = ai−1 − βbi−1qi−1

bi = bi−1 − αai−1qi

ci = ci−1 − βdi−1qi−1

di = di−1 − αci−1qi (5.1)

where

(
a0 b0
c0 d0

)
=

(
A B
C D

)
are the only fixed values of the ai, bi, ci, di’s and α, β

are treated as integers smaller than p.

Case α = β = 1 First assume that α = β = 1. Since AD −BC = 1, gcd(A,B) =
gcd(C,D) = 1, and we have either A > B or D > C. We consider the case A > B,
the argument for other case is analogous. Let q1, . . . , qn be the quotients that appear
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when Euclidean algorithm is applied to (A,B), i.e.

A = Bq1 + r1

B = r1q2 + r2
...

ri = ri+1qi+2 + ri+2

...

rn−2 = rn−1qn = gcd(A,B)qn = qn

Note that Y A−q1
1 A−q2

0 =
( r1 r2
C−Dq1 −q2(C−Dq1)+D

)
, and for i odd, Y A−q1

1 A−q0
0 . . . A−qi

1 =

( ri ri−1
⋆ ⋆ ) and Y A−q1

1 A−q0
0 . . . A−qi

1 A
−qi+1

0 = ( ri ri+1
⋆ ⋆ ). If n is even then

Y A−q1
1 A−q2

0 . . . A−qn
0 =

(
1 0
q 1

)
= Ax

1 , for some q ∈ Z, (q < C) since rn−1 = 1. In

other words, we have Y = Aqn
0 A

qn−1

1 . . . Aq2
0 A

q1+q
1 where q1, . . . , qn, q are obtained

when the Euclidean algorithm is applied to (A,B). The practical application of this
principle to produce collisions of reasonable length is demonstrated in [97]. This
gives a polynomial time solution for collisions.

Case α ̸= 1, β ̸= 1 In the case with general α, β, there is no clear protocol to solve
the set of equations (5.1) for the qi’s. For instance, we start with the assumption
that A > B, but it may still happen that A ≤ βB, and then there is no clear way
to apply the Euclidean algorithm.

5.2.2 Extending messages for diagonal hashes over Fp

In this subsection, we discuss the extension of messages to produce diagonal hashes
in SL2(Fp). The below lemma demonstrates the production of a diagonal matrix
starting with the hash of an arbitrary message.

For a matrix C, we denote by C[i, j] the (i, j)th entry of C. Further, a message is
denoted in its binary string representation m = 0n11m1 . . . 0nr1mr where multipli-
cation corresponds to concatenation, and for b ∈ {0, 1}, the string bn denotesf the
concatenation of n consecutive b-bits.

Lemma 5.1. Let z be any message and C := H(z) ∈ SL2(Fp) be its corresponding
hash value. Assume that a := C[0, 0] ̸= 0. Then there exist integers m,n ∈
{0, 1, . . . , p− 1} such that C ·Am

0 ·An
1 is a diagonal matrix and (C ·Am

0 ·An
1 )[0, 0] =

C[0, 0].
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Proof. Write C =

(
a b
c d

)
. Set m = −b/(aα) and n = −ac/β. Then

C · Am
0 · An

1 =

(
a(1 +mnαβ) + nbβ 0
c(1 +mnαβ) + ndβ mcα+ d

)
Now, c(1+mnαβ)+ndβ = c(1+ bc)−acd = c−c(ad− bc) = 0, since C ∈ SL2(Fpk).
Further, A(1+mnαβ)+nbβ = a(1+bc)−abc = a, and mcα+d = −bc/a+d = 1/a.

Thus, C · Am
0 · An

1 =

(
a 0
0 a−1

)
.

Generating Collisions

In [79], the authors describe a method which uses the representation of 1 and pre-
images of multiple diagonal matrices to produce a collision with the hash H() of
the empty word. We show here that Lemma 5.1 can be used to generate collisions
in an alternative fashion. Let z be any message and C := H(z) ∈ SL2(Fp) be its
hashed value. Observe that for any integers m and n, the matrix D := An

1 · C · Am
0

satisfies D[0, 0] = C[0, 0]. Pick arbitrary distinct integers n1,m1, n2,m2 and set
D1 := An1

1 ·C ·Am1
0 and D2 := An2

1 ·C ·Am2
0 . Then clearly, D1[0, 0] = C[0, 0] = D2[0, 0].

Now apply Lemma 1 and find integers m̃1, m̃2, ñ1, ñ2 such that D̃1 := D1 ·Am̃1
0 ·Añ1

1

and D̃2 = D2 · Am̃2
0 · Añ2

1 are diagonal and satisfy D̃1[0, 0] = D1[0, 0] = C[0, 0] and
D̃2[0, 0] = D2[0, 0] = C[0, 0]. Since D̃1 and D̃2 are diagonal, have the same entry, and
lie in SL2(Fp), they must be equal, i.e. D̃1 = D̃2. Defining z1 = 1n1 · z · 0m1+m̃1 · 1ñ1

and z2 = 1n2 · z · 0m2+m̃2 · 1ñ2 . Clearly, z1 ̸= z2 but H(z1) = H(z2).

Example 5.1. For p = 7919, α = 5698, β = 6497, consider the message text

z =0441410171490471170501310151100391120210024141028123091004712301130018

132024114001490191280241260261260111101712003812201213808133039142047129

01014101414501314004211302160401310212701170361190312501012702112012123

03618025139036100191390371320141403112016123049125023119046123036131

We have, H(z) =

(
4812 5537
4987 1690

)
. Choose random numbers m1 = 18, n1 = 30,

m2 = 35, n2 = 33 and compute m̃1 = 6208, ñ1 = 744, m̃2 = 6191, ñ2 = 180 using
Lemma 5.1. Then for z1 = 130 · z · 062261744 and z2 = 133 · z · 062261180 we have the

collision H(z1) = H(z2) =

(
4812 0
0 1542

)
.

It is clear that the above method provides a deterministic technique to produce
arbitratrily many distinct non-trivial collisions of size O(p). For the collisions to
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be of practical length, we further require that the values of the exponents m and n
are considerably small relative to p so that the resulting messages are of reasonable
length.

Experimental results We looked for such m and n by random computer search
in the above examples, using randomly generated messages of reasonable length and
checking for the condition m = −b/(aα) < √p and n = −ac/β <

√
p. Unfortu-

nately, for larger values of p, experiments indicate a very low probability of finding
such values. For 30 − 40 digit primes, brute force could no longer find any such
examples.

The below proposition describes a more structured approach for extending messages
of the form T = Ar

0A
s
1.

Proposition 5.2. Consider a bound δ. If there exist integers r < δ, y > p− δ such
that s := (y−1−r−1)(αβ)−1 < δ (where inverses are taken mod p) and s(1+rsαβ) >
p − δ, then for the message T = Ar

0A
s
1 (of length ≤ 2δ), there exist m,n < δ such

that H(T )Am
0 A

n
1 is diagonal.

Proof. We have H(T ) =

(
1 + rsαβ rα

sβ 1

)
. As per Lemma 5.1, the condition for

H(T )Am
0 A

n
1 diagonal is that m = −r/(1 + rs(αβ)) and n = −s(1 + rs(αβ)). Write

x = (1 + rs(αβ)). For m,n < δ we require rx−1 > p − δ, and sx > p − δ. We
set y := rx−1, from this we derive s = (y−1 − r−1)(αβ)−1. Clearly, if y > p − δ
and s(1 + rsαβ) > p − δ then m = p − y < δ and n = p − sx < δ, and by
assumption, r, s < δ, so the messages T = Ar

0A
s
1 and Am

0 A
n
1 each have length ≤ 2δ

and H(T )Am
0 A

n
1 is a diagonal matrix.

This clearly yields an algorithm with time complexityO(δ2) to test if for given values
of α, β, a message of the form can be extended to have a diagonal hash. Indeed,
one needs only to test all integers r < δ, y > p − δ for the two conditions given in
Proposition 5.2.

5.2.3 Extending messages for triangular hashes over Fpk

We now turn our attention to the more general case of producing upper or lower
triangular hashes. In this subsection, we will consider the general case of k ≥ 1 for
the generalized Zémor hash functions over Fpk , and study the feasibility of efficiently
producing messages hashing to upper triangular messages.

Transforming the hash values of a message into an upper or lower triangular matrix
leads to producing collisions due to the following observation, which was explained
in Propositon 3 of [79]. Suppose that one can produce r distinct messages zi such
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that H(zi) =

(
ai bi
0 di

)
is upper triangular. Also let ei be exponents such that

r∏
i=1

aeii = 1. In other words, (e1, . . . , er) is a solution to the representation problem

in F∗
pk
, which in turn reduces to a discrete log problem, since the multiplicative

group of a finite field is cyclic. Then, for z = z1 . . . zr we have H(z) =

(
1 b
0 1

)
and

thus H(z||z) =
(
1 0
0 1

)
which collides with the hash value of the empty word.

We begin by proving some preliminary results below.

Lemma 5.2. Suppose that the product α · β ∈ Fp and that C =

(
a b
c d

)
is an

arbitrary product of finitely many copies of A0 and A1. Then, c/β ∈ Fp and d ∈ Fp.

Proof. Write C = Am1
0 An1

1 . . . Amr
0 Anr

1 :=

(
ar br
cr dr

)
. The proof proceeds by in-

duction on r. For the case r = 1, we have C =

(
1 +mnαβ mα

nβ 1

)
. Clearly,

c1/β = n1 ∈ Fp and d = 1 ∈ Fp, so the result holds.

Now assume that the result holds for r ≥ 1. Write m := mr+1 and n := nr+1. We
have

Cr+1 =

(
ar br
cr dr

)
·
(
1 +mnαβ mα

nβ 1

)
=

(
ar(1 +mnαβ) + nbrβ armα + br
cr(1 +mnαβ) + ndrβ crmα + dr

)
Now,

cpr+1/β
p =1/βp[cpr(1 +mnαβ)p + ndprβ

p]

=1/βp[cpr(1 +mnαβ) + ndprβ
p]

=(cr/β)
p(1 +mnαβ) + ndpr.

By the induction hypothesis we have dpr = dr ∈ Fp and (cr/β)
p = cr/β ∈ Fp, and so

cpr+1/β
p = (cr/β)(1 +mnαβ) + ndr = cr+1/β ∈ Fp. Further,

dpr+1 = (crmα + dr)
p =mcprα

p + dpr = mcprα
p + dr = mcr · cp−1

r αp + dr

=mcr · βp−1αp + dr

=mcr · (αβ)p−1α + dr

=mcrα + dr = dr+1

Hence, we have cr+1/β ∈ Fp and dr+1 ∈ Fp. By induction, the statement holds for
all r ≥ 1 and hence the lemma holds.
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Lemma 5.3. Let k ≥ 1 and α ·β ∈ Fp. Let z be any message and C := H(z) be its
corresponding hash value. Assume that a := C[0, 0] ̸= 0. Then, there exist integers
m,n ∈ {0, 1, . . . , p− 1} such that C · Am

0 · An
1 is upper triangular.

Proof. Write C =

(
a b
c d

)
. For integers m and n, we have

C · Am
0 · An

1 =

(
a b
c d

)(
1 +mnαβ mα

nβ 1

)
=

(
a(1 +mnαβ) + nbβ maα+ b
c(1 +mnαβ) + ndβ mcα+ d

)
Choose m to be any integer such that mcα + d ̸= 0. Since αβ ∈ Fp, c/β ∈ Fp and
d ∈ Fp, we also have cα = (c/β) · α · β ∈ Fp, and we can define

n := − c

β(mcα + d)
∈ Fp (5.2)

This gives C · Am
0 · An

1 =

(
a(1 +mnαβ) + nbβ maα+ b

0 mcα + d

)
.

Corollary 5.1. Let k ≥ 1 and α · β ∈ Fp. Let δ be a bound. Let C =

(
a b
c d

)
be the hash of an arbitrary message and m ∈ {0, 1, . . . , p − 1} be an integer such
that both m and n = −c/(β(mcα+ d)) ∈ Fp are smaller than δ. Then CAm

0 A
n
1 has

length at most 2δ more than C and is upper triangular.

Experimental results Again, we looked for such m and n by random computer
search in the above examples, using randomly generated messages of reasonable
length and checking for the condition above. Once again, for larger values of p,
experiments indicate a very low probability of finding such values. For 30− 40 digit
primes, brute force could no longer find any such examples.

Below, we explore a more structured approach for messages of the form T = Ar
0A

s
1.

Lemma 5.4. Let k ≥ 1 and α · β ∈ Fp. Consider a bound δ. If there exist integers
m, s < δ such that s(msαβ+1)−1 > p−δ, then for the message T = Ar

0A
s
1 (of length

≤ 2δ, here r can be chosen freely), for n = p − s(msαβ + 1)−1 < δ, H(T )Am
0 A

n
1 is

upper triangular.

Proof. We have H(T ) =

(
1 + rsαβ rα

sβ 1

)
. Let m, s < δ be integers

such that s(msαβ + 1)−1 > p − δ. The condition for H(T )Am
0 An

1 =
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(
1 + rsαβ rα

sβ 1

)(
1 +mnαβ mα

nβ 1

)
=

(
(1 + rsαβ)(1 +mnαβ) + rnαβ rα

sβ(1 +mnαβ) + nβ 1 +msαβ

)
being upper triangular is that n = −s(1 +ms(αβ))−1. The result is now clear.

This clearly yields an algorithm with time complexityO(δ2) to test if for given values
of α, β, a message of the form T = Ar

0A
s
1 can be extended to one with an upper

triangular hash, for a fixed bound δ. Indeed, one needs only to test all integers
m, s < δ for the two conditions given above.

Clearly, for C · Am
0 · An

1 to be upper triangular, n needs to assume the value in
equation (5.2). Below, we derive the general condition (without the assumption
α · β ∈ Fp) on m so that both the m and n lie in Fp.

Proposition 5.3. If α · β ̸∈ Fp, then C · Am
0 · An

1 is upper triangular for m,n ∈ Fp

if and only if for

γ =

(
d((dβ)p−1 − cp−1)

αcp(1− (αβ)p−1)

)
, (5.3)

we have γp = γ, and m = γ; n =
−c

β(mcα + d)
.

Proof. From the proof of Lemma 5.3, it is clear that for CAm
0 A

n
1 to be upper trian-

gular, Equation (5.2) must hold, along with mp = m and np = n. We have,

− n = c/(β(mαc+ d)) ∈ Fp

=⇒ cp/(βp(mαpcp + dp)) = c/(β(mαc+ d))

=⇒ (c/β)p−1 · (mαc+ d) = mαp + dp

=⇒ cp−1 · (mαc+ d) = βp−1 · (mαpcp + dp)

=⇒ mαcp · (1− (αβ)p−1) = βp−1dp − cp−1d

=⇒ m =
d((dβ)p−1 − cp−1)

αcp(1− (αβ)p−1)

Thus, for m = γ, one necessarily has n :=
−c

β(mcα + d)
∈ Fp. So, in order to

obtain an upper triangular matrix, the only condition that needs to be satisfied is
γp = γ.

Lemma 5.5 (Case k = 2). Let k = 2 and α ·β ̸∈ Fp. As before, let C =

(
a b
c d

)
∈

SL2(Fp2) be an arbitrary product of finitely many copies of A0 and A1. Then with
γ defined as in (5.3), γp = γ always holds.
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Proof. In this case, for any nonzero field element y we have yp
2−p = y1−p, so

γp =

(
d((dβ)p−1 − cp−1)

αcp(1− (αβ)p−1)

)p

= (dpc/αp)

(
((dβ)1−p − c1−p)

(1− (αβ)1−p)

)
= (dp/cα)1/(dβc)p−1(αβ)p−1

(
((dβ)p−1 − cp−1)

(1− (αβ)p−1)

)
= d/(αcp)

(
((dβ)p−1 − cp−1)

(1− (αβ)p−1)

)
= γ.

Thus, in SL2(Fp2) one can always find collisions by right-multiplying an arbitrary
matrix by a product Am

0 A
n
1 . In other words, a message in SL2(Fp2) is always ex-

tendable to have a triangular hash.

Example 5.2. Consider SL2(Fp2) for p = 239, with generator denoted by z. Consider
the following message text

T =01712501118038133029127040124041203811601613905014203612202141027129011

11502914702913304713035132049127024100211490331405014404214304129014139

0141150411004111020134041604315011170371290401200111302114031141019124

05015002512303013906146039127081902513800146015133047140040126048145

For a random choice of α and β, we may obtain hash H(T ) =(
134z + 110 131z + 185
74z + 17 58z + 41

)
. Calculating m and n as per Lemma 5.3, we see that

H(T )01110 =

(
106z + 192 25z + 30

0 218z + 62

)
.

A natural question arises here: can we generalize this method to make

C · Am1
0 An1

1 . . . Amr
0 Anr

1

upper/lower triangular and thereby extend the result to all SL2(Fpk)? Since the
major constraint is the condition γp = γ (and the size of γ does not seem easy to
control), we first explore how the value of γ changes when C is multiplied on the
right by a random product Am

0 A
n
1 .

Theorem 5.1. Let C =

(
a b
c d

)
and C ′ := C · Am

0 · An
1 =

(
a′ b′

c′ d′

)
. Let γ and γ′

be defined as in equation (5.3). Then, we have

γ′ = (c/c′)p+1(γ −m)
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Proof. Let

X :=
1

α(1− (αβ)p−1)
, γ :=

Xd

cp
[(dβ)p−1 − cp−1]

We have,

γ′ =X
d′((d′β)p−1 − (nβd′ + c)p−1))

(c′)p
= Xd′

(d′β)p−1 − nβ(d′)p+cp

nβd′+c

(c′)p

=Xd′
(d′β)p−1(nβd+ c))− nβ(d′)p − cp

(c′)p+1

=Xd′c
(d′β)p−1 − cp−1

(c′)p+1
= Xd′c

(d′β)p−1 − cp−1

(c′)p+1

=
Xcd′

c′p+1d′β
[(mcpαp)βp − cp−a1(cmα + d)β]

=
Xc

c′p+1β
[mcpαβ((αβ)p−1 − 1) + dβ((dβ)p−1 − cp−1)]

Plugging the values of X and γ from above into the equation, we get

γ′ =
Xc

(c′)p+1β
mcpαβ((αβ)p−1 − 1) +

Xcd

(c′)p+1

(
cpγ

Xd

)
=
( c
c′

)p+1

[−m+ γ]

For an extension where multiplication by a product Am
0 A

n
1 is allowed twice, we have

the following result.

Lemma 5.6. For C :=

(
a b
c d

)
, there exits integers m1,m2, n1, n2 such that

CAm1Bn1Am2Bn2 is upper triangular if and only if the equation

q3x
2y + q2xy + q1y + q0 = 0 (5.4)

has a solution (x, y) ∈ Fp × Fp, where q0, q1, q2, q3 are given by

q3 = cp
2

αβ((αβ)p
2−1 − 1),

q2 = cp
2

γαβ(γp−1 − (αβ)p
2−1) + dβ((dβ)p

2−1 − 1),

q1 = dβγ(cp
2

γp−1 − (dβ)p
2−1),

q0 = cp
2

γ(γp−1 − 1).

(5.5)
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Proof. Let C ′ := C · Am · Bn =

(
a′ b′

c′ d′

)
and let γ′ be defined as in equation (5.3).

By Theorem 5.1 we have γ′ := (c/c′)p+1(γ −m) ∈ Fp. We treat x := m and y := n
as variables in Fp. For C ′ to be upper triangular for some values of x and y, we
require

(γ′)p = γ′

=⇒ cp
2+p(c′)p+1(γp − x) = cp+1(c′)p

2+p(γ − x)
=⇒ cp

2

c′(γp − x) = c(c′)p
2

(γ − x)
=⇒ cp

2

(γp − x)(c+ (cαx+ d)yβ) = c(cp
2

) + (xcp
2

αp2 + dp
2

)yβp2)(γ − x)
=⇒ cp

2−1[γpc+ γpcαβxy + γpdβy − cx− cαβx2y−dβxy = cp
2

γ + (cαβ)p
2

γxy+

(dβ)p
2

γy − cp2x− (cαβ)p
2

x2y − (dβ)p
2

xy

=⇒ ((cαβ)p
2 − cp2αβ)x2y + (−(cαβ)p2γ + γpcp

2

αβ + (dβ)p
2 − dβ)xy+

(cp
2

γp(dβ)− γ(dβ)p2)y + (γpcp
2 − γcp2) = 0

=⇒ q3x
2y + q2xy + q1y + q0 = 0

where q0, q1, q2, q3 are given as in Equation (5.5). The proof is now complete.

Note that for q0, q1, q2, q3 as in Equation (5.5), we can rephrase the condition in

Lemma 5.6 as follows. C :=

(
a b
c d

)
is upper triangularizable by right multiplication

if and only if the system of equations

q3x
2y + q2xy + q1y + q0 = 0

xp = x

yp = y

(5.6)

has a simultaneous solution (x, y) in Fpk × Fpk . One may then use Gröbner bases
to solve this system of equations. A corresponding conditions for C to be lower
triangularizable by left/right multiplication and to be upper triangularizable by left
multiplication can be derived similarly.

Example 5.3. For simplicity, consider the field F25 with generator z5 and α = z35 +1,
β = z35 + z25 + 1. Consider the hash matrix

C =

(
z45 + z35 + z25 + z5 z45 + z35 + z25 + z5

z35 z45 + z35 + z25

)
.

Here, we have γ = z45 +z5+1 and the polynomial in Equation (5.4) is (z25 +z5)x
2y+

(z35 + z25 +1)xy+ (z35)y+ (z45 + z25 + z5). The ⟨(z25 + z5)x
2y+ (z35 + z25 +1)xy+ z35y+

(z45 + z25 + z5), x
p − x, yp − y⟩ is trivial, so its Gröbner basis is {1}.
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We attempted the above experiment with various different values of p and k and
random matrices C which are products of A and B. In each case, without exception,
we found no solution (i.e. the resulting Gröbner base of the ideal ⟨q3x2y + q2xy +
q1y + q0, x

p − x, yp − y⟩ was ⟨1⟩). Therefore, this method of extension to produce a
triangular matrix is not practically feasible.

5.3 Generalized Tillich-Zémor Hash Functions

In this section, we consider the generalized Tillich-Zémor hash function ϕ with the

generators A0 =

(
α 1
1 0

)
and A1 =

(
β 1
1 0

)
where α, β ∈ Fpk .

More generally, treating x as a variable, we consider the matrix Y =

(
x 1
1 0

)
and

first compute its powers. Clearly, we have

Y 2 =

(
x2 + 1 x
x 1

)
, Y 3 =

(
x3 + x2 + x+ 1 x2 + 1

x2 + 1 x

)
More generally, we can write

Y n =

(
fn(x) fn−1(x)
fn−1(x) fn−2(x)

)
, n ≥ 2 (5.7)

where f0(x) = 0, f1(x) = 1, and

fn(x) = xfn−1(x) + fn−2(x) (5.8)

It is clear that the recurrence relation (5.8) fully describes the powers of the matrix
Y . The above formulation and recurrence relation were also derived in [1].

5.3.1 Computing fn(x) for characteristic p ̸= 2

In [1], an expression for fn(x) was derived in the case p = 2. The authors also
calculate probabilities that the orders of A and B lie within certain bounds. In this
section, we address the case p ̸= 2 and derive a closed formula for fn(x).

We may solve the recurrence Equation (5.8) by finding roots of the auxiliary poly-
nomial t2 − xt− 1 = 0. The quadratic formula then gives us

t =
x±
√
x2 + 4

2
.
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Setting r =
x+
√
x2 + 4

2
and s =

x−
√
x2 + 4

2
, a general solution to (5.8) has to

be of the form fn(x) = urn + vsn. Note that we also have the initial conditions
f1(x) = 1 and f0(x) = 1 (or equivalently f2(x) = x2+1). Plugging these in, we may
solve for u and v to get

u =
x+
√
x2 + 4

2
√
x2 + 4

, v = 1− u =
−x+

√
x2 + 4

2
√
x2 + 4

.

Write w =
√
x2 + 4. Note that for any n ≥ 1, we have

fn(x) = urn + vsn =

(
x+ w

2w

)(
(x+ w)n

2

)
+

(
−x+ w

2w

)(
(x− w)n

2

)
=

(
(x+ w)n+1

2n+1w

)
−
(
(x− w)n+1

2n+1w

)
=

1

2n+1w

[
n+1∑
i=0

(
n+ 1

i

)
xiwn+1−i −

n+1∑
i=0

(
n+ 1

i

)
xiwn+1−i

]

=
1

2n+1

[ ∑
0≤i≤n+1, n−i is even

(
n+ 1

i

)
xiwn−i

]

=
1

2n+1

 ∑
0≤i≤n+1, n−i is even

(
n+ 1

i

) (n−i)/2∑
j=0

(
(n− i)/2

j

)
xi+2j4(n−i)/2−j


=

1

2n+1

 ∑
0≤i≤n, n−i is even

(n−i)/2∑
j=0

(
n+ 1

i

)(
(n− i)/2

j

)
2n−2jxi+2j



(5.9)

Thus, fn(x) is always a polynomial in Fp[x], and we have a closed formula for
calculating it. Powers of A0 and A1 may therefore be computed in constant time.

Note that Fpk is typically viewed through the isomorphism Fpk
∼= Fp[x]/⟨p(x)⟩ where

p(x) is an irreducible polynomial of degree k over Fp. Thus, an element γ ∈ Fpk is
a polynomial of degree smaller than k, say γ = gγ(x). fn(γ) can then be calculated
as a polynomial modulo p(x) by simply composing fn and g, i.e. fn(γ) = fn(gγ(x))
(mod p(x)).

We also have the following straightforward observation. A similar statement is found
in [1].

Lemma 5.7. Let q(x) be any irreducible polynomial of degree d. Then, the sequence
{fn(x) (mod p(x))} is periodic, and its order divides (p2k − pk)(p2k − 1)/(pk − 1).

113



Chapter 5
Methods for Collisions in some

Algebraic Hash Functions

Proof. Clearly, for Y =

(
x 1
1 0

)
, Equation (5.7) gives us a formula for Y n in terms

of fn(x), fn−1(x) and fn−2(x). Since Y must have a finite multiplicative order ny in
the finite group SL2(Fp[x]/⟨q(x)⟩), we must have fny−1(x) = 0, fn(x) = fn−2(x) = 1.
From this point onwards, the sequence repeats its terms, and therefore its period is
given by ny, which must divide the order of the matrix group.

Lemma 5.8. Suppose that the adversary can compute integers m and n such that
fn−1(gα(x)) = fm−1(gβ(x)) (mod p(x)) and fn−2(gα(x)) = fm−2(gβ(x)) (mod p(x)).
Then, the adversary can compute a collision of sizeO(max(m,n)) for the Generalized
Tillich-Zëmor hash function ϕ.

Proof. In this case, it is clear from (5.8) that fn(gα(x)) = fm(gβ(x)) (mod p(x)),
and so An

0 = Am
1 , i.e. ϕ(0

n) = ϕ(1m).

Note that the above result includes the cases m = 0 and n = 0, i.e. finding collisions
with the identity matrix. However, by looking at the expression (5.9) for fn(x), one
sees that even for the simplest equation fn(x) = 0 (mod p(x)), finding a solution for
the value of n is not straightforward, since in (5.9) n occurs both as a polynomial
term (in the binomial coefficients) and in the exponent of 2. This problem seems to
be a complex amalgamation of a generalized discrete logarithm with a polynomial
rather than a single power. One may extend the above result to products with more
terms.

Lemma 5.9. Let Fp[x]/⟨q(x)⟩ be a finite field. If an adversary can find integers m
and n such that the following relations hold

fm(fn(x)) + fm−1(fn−1(x)) = 1 (mod q(x))

fm(fn−1(x)) + fm−1(fn−2(x)) = 0 (mod q(x))

fm−1(fn(x)) + fm−2(fn−1(x)) = 0 (mod q(x))

fm−1(fn−1(x)) + fm−2(fn−2(x)) = 1 (mod q(x)),

then H(0m1n) = H() gives a collision with the hash H() of the empty word.

Note that in both the above results, the problem potentially becomes even more
difficult if one constrains the values of m and n to yield practical-sized collisions.

5.3.2 Malicious paramaters

As seen in the above discussion, the security of the generalized Tillich-Zëmor hash
functions relies on the choice of the irreducible polynomial through which the finite
field is constructed. Thus, a malicious construction of this polynomial can lead to
the designer of the hash function being able to easily compute collisions.
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In [17], the authors produce malicious polynomials in finite fields F2m , reducing
the problem of collision-finding in the matrix group to the search for an irreducible
polynomial of degree m, such that m + 1 is a proper divisor of q − 1 or q + 1,
where q = 2m. Over the field so constructed, the matrix A has a small order 263,
and leads also to a non-trivial collision, which the authors exemplify for SL2(F2131).
This attack fails if q − 1 and q + 1 are both primes or if the factorization of their
gcd involves large primes, since the collisions yielded are then too long.

In [1], the authors also deal exclusively with the characteristic 2 case, and propose an
algorithm to decide whether the given irreducible polynomial leads to a vulnerable
system under the attack of [17], and propose a solution to fix the vulnerability. In
the following result, we describe a malicious design for the choice of the polynomial
defining the finite field, for odd characteristic p.

Theorem 5.2. If one can find N such that gcd(fN(x) − 1, fN−1(x)) has an ir-
reducible divisor q(x) of degree d, one can find a collision of size O(N) for the
hash function ϕ(x) over the finite field Fp[x]/⟨q(x)⟩. On the other hand, given a
fixed finite field Fp[x]/⟨q(x)⟩, if one can find an integer N such that q(x) divides
gcd(fN(x)− 1, fN−1(x)) then one can find collisions of size O(N) for ϕ.

Proof. If one can find N such that gcd(fN(x), fN−1(x)) has an irreducible divisor
q(x) of degree d, then fN(x) = 1 (mod q)(x), fN+1(x) = 0 (mod q)(x), then the se-
quence {fn(x) (mod Fp[x])/⟨q(x)⟩} has a period dividing ny, and the multiplicative
order of Y in SL2(Fp[x]/⟨q(x)⟩) divides N . Thus, one has a collision of H(0N) with
the hash of the empty word.

Example 5.4. q(x) = x12 + 2x10 + x6 + 2x4 + 2x3 + x2 + x + 1 is an irreducible
polynomial over F3 such that {fn(x) (mod q)(x)} has period 531440 = 312 − 1.
Thus, in SL2(F312), we always have collisions H(0531440) = H(1531440) = H().
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