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1 Objective

Let n denote a positive integer. Throughout, [n] will denote the largest integer function
evaluated at the number n. We define a Euclidean Decomposition of n as a triple (z,y, z)
of non-negative integers satisfyingn =z-y+2, 0 <z, y <n, 0 < z < z. We call the numbers
z, y and z the terms of the decomposition. For fixed 0 < z < n, it is easily verified that
the equation has the unique solution y = L%J, z=n—x-y.

One may then ask how one finds a Euclidean decomposition (x,y, z) of n with the minimum
sum x + y + z of its constltuent terms. It is easy to see that such a decomposition can always
be found in time O(n2) by trying all choices for x between 1 and [/n] 4+ 2. We will show in

this work that there also exists an algorithm with complexity O(ng) for this purpose.

2 Preliminaries

Lemma 1.
1. n> L\/ﬁf with equality if and only if n is a perfect square.
2. n < Vil (Wi +2)

Proof.

1. This follows from the fact that [\/n| < /n with equality if and only if y/n is an integer,
i.e. n is a perfect square.

2. Note that |/n] > +/n — 1 by the definition of the floor function. We have

[val - ([Va] +2) = [Va]” + WﬁJ
(Va-1)+2- (Va-1)
(n+1—2 Vi) +2-y/n—2
=n-—1

\Y

Since [v/n] - (|v/n] + 2) and n are both integers, the above inequality implies that |y/n] -
([v/n] 4+ 2) > n, as required.
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Remark 1. Let x -y =n=2a' -y, with x = |\/n| —t1, y = [\/n] +s1, 2/ = [\/n] —ta, ¥ =
L\/’TZJ + s9. Then, t] <ty <= s1 < $9.
Lemma 2. Let

n=xz-y+z I1I<zx<y<n, 0<z<zx (1)
Then, without loss of generality we can write

z=|vn|—t>0, y=|vn|+s>0, with 0 <t <s (2)

Consequently,

r+y+z=2-[Vn|+(s—t)+2z s>t>0 (3)
So, x+y+2z>2-|\/n]. Moreover, we have z > t2.

Proof. First note that whenever n = z - y + 2z, with z < z < y, we have {—J = y. Since the
x
equation is symmetric in x and y, it is enough to consider the case x < y. For any s > 0, we

have
n

|Vn| > h\/ﬁHsJ > |Vn| —s

Thus, we necessarily have < |\/n], or in other words x must be of the form (|/n| — t), [/n] >
t > 0. For any such t,
n n n

Vn] 1= VAt n-

= v=| [y 2 LVl

Thus, y must be of the form |y/n] + s, with s > ¢ > 0. So, x +y, and thus x +y + z, is greater
than or equal to 2 - |y/n]. Moreover, we have

2 =n—(lva) - (Ve +3)
> n— (|va) = 0(|va) + ) (4)

> ¢2

(Vi +1)

d

Proposition 1. For any m > 0, the sequence x, = {(x—7r)(x+r+m)},>o is strictly decreasing
mr.
Proof. We have, for r > 0,

Tr—Tpp1=(x—71)-(x+r+m)—(x—r—1)-(z+r+m+1)
=m+1+2-7r>0



3 Finding the minimum sum decpmposition

3.1 CASE |/n] divides n

Theorem 1. Letn > 1, and assume that |\/n| dividesn. The tuple (p,q,r) = ([\/n], { " J ,0)

satisfies
p+q+r=min({(z,y,2) | (x,y, 2) is a solution of equation (1) })

Proof. We have, using Lemma 1,

We now examine each sub-case separately.
1. CASE n = |/n/?

Here, we have n = L\/ﬁj2, so n is a perfect square, so v/n = |\/n], 2 =s =t =0, and,
by equation (3), the minimum possible sum has value 2 - |\/n] = 2-4/n. The proof is
complete for this case.

2. CASE n = |yn] - (|v/n]+1)
We have, for any ¢ < |/n],

NIRRT

[V —t
— vl + 14 e A
>t+1

ft>1l,o+y+z=2(vn|+(—-t)+z>2|V/n]+(—-t)+t2>2|/n] +2.

n

Ift=0,s= h\/ﬁJ—tJ —|v/n] =1 and z = 0, and thus the sum is equal to 2- [ /n] +1.
By (3), p = [v/n] is as required.
3. CASE n = |v/n] - (|v/n] +2)

We have, as before, for any t < |/n],



Ll (LA +2)
= e

= LﬁHHW-t—L\/EJ > t42

So,ift>1,z+y+z=2|/n]+(s—t)+z>|V/nl+(s—t)+t2+s—t>|/n] +3.

L\/ﬁnj—tJ —|vn] =2,and 2 =0. Thus, z +y+2z =2 |/n] +2.

By (3), this is the minimum sum attainable in this case, therefore p = |/n].

Ift:(),wehaves:{

O]

3.2 CASE |/n] does not divide n
Lemma 3. Suppose that n < |\/n] - (|\/n] +1). Then there exists 0 < ag < ni such that
(L] = a0 = 1) - (Vi) +a0+2) <n < ([Va] —ao) ([Vi] +a0+1)  (5)
On the other hand, if n > |v/n] - ([\/n] + 1), there exists 0 < rq < nt such that
([vVn] =ro=1) - ([Vn] +r0+3) <n < ([Vn] —ao) ([Vn] + a0 +2) (6)

Proof. First suppose that n < [\/n] - (|v/n] 4+ 1). By setting m = 0 in Proposition 1, we have
a strictly decreasing integer sequence

{Xa= (V] —a) ([Va] +a+ 1)},

with first (and maximum) term equal to |/n] - (|v/n] +1). Also, for a = |/n], X, = 0. So,
XL\/EJ < n < Xo. Thus, there exists ag such that (3) is satisfied. Now, for any such ag,

n < ([Vn] —ao) - ([V] +a0+1) < [Va|* a5 + [V - ao
= af <aj+ao < |Vn| (|[Vn| +1) —n<|vn] <vVn

1 .
Thus, ag < n1, as required.

Now suppose that n > [/n] - (|v/n] +1). We know, by Lemma 1, that n < |/n] - (|v/n] +2).
By setting m = 2 in Proposition 1, we have a strictly decreasing integer sequence

{Yo = (V| =) ([Vn] +7+2)},

with first (and maximum) term equal to

VA - (V] +2).

4



Also, for r = |\/n], Y, = 0. So, Y] < n < Yy. Thus, there exists r¢ such that (6) is satisfied.
[vn]

n
Now, for any such 7,

n < (V] —ro) - (Va] +ro+2) < [Va]* —rf+2| V] —2ro
- r02<r02+2r0<t\/ﬁj'(L\/ﬁj—kl)—njtt\/ﬂ
< L\/ﬁJ (since n > L\/rﬂ : (L\/ﬂ + 1))

Thus, r¢ < ni, as required. ]
Lemma 4. Suppose that B is an upper bound for the quantity (s —t). Then, we have
t<ni-(B+1)/2

Proof. We have,

P B B R Oy~ RN e RVi2) N
st= | ] - WAl - (Al -1 =t
t2

—=t? < (B+1) [Vn] <vn-(B+1)
— t<ni (B+1)Y2

O]

Proposition 2. Suppose that n < [/n] - (|v/n] + 1) and let ag be as in Lemma 3, and s and
t be as in (2). Write

CUO:L\/HJ+GO+2, yOZL\/ﬁJ*GO*L 20 =1 — Zo " Yo (7)
z1 = [Vn] —t, y1 = |Vl +s, 21=n—21-Y1 (8)

Then, if x1 4+ y1 + 21 < o + Yo + 20, then t < ni - (Qni + 3)1/2,

Proof. First note that we have

2o=n—zo-yo=n— (|vn] —ao—1) (|[vVn] +ao+2)
= 20 <(|vn] —ao0) ([Vn] + a0 +1) = ([Vn] — a0 — 1) (|v/n] + a0 +2)

= 29 <2- (CLQ + 1) (9)

By assumption, 1 + y1 + 21 < 9 + yo + 20, SO

2- [V +(s—t)+2 <2 [Vn]+1+2 (a0 +1)
Ss=t)<(s—t)+21 <2 (agp+1) (10)



Also recall from Lemma (3) that we have ay < ni. Now, applying the upper bound from
equation (9) to the claim above, we get

t<ni- (2a0 + 3)'/% < ni - (2ni +3)1/2,
O

Proposition 3. Suppose that n > [\/n| - ([\/n] + 1) and let ro be as in Lemma 3, and s and
t be as in (2). Write

zo0 = |Vn|+r0+3, yo = |Vn| —ro—1, 20 =N — T - Yo (11)
z1 = [Vn] —t, y1 = |Vn| +s, 21 =n—21 Y1 (12)

Then, if x1 +y1 + 21 < 2o + Yo + 20, then t < ni - (Qn% +4)1/2,

Proof. First note that we have

2o=n—1x0-yo=n— (|vn| —r) ([vVn] +ro+2)
= 20 < ([vn] —ro) (Vn] +r0+2) = ([Vn] —ro = 1) (V] +ro+3)
= 20<2-19+3 (13)

By assumption, x; + y1 + 21 < g + Yo + 20, SO

2-|Vn|+(s—t)+21<2-|Vn|+1+2-170+3
'.(S—t)g(s—t)+21<2-’r‘o—|—4 (14)

Also recall from Lemma 3 that we have ry < ni. Now, applying the upper bound from Lemma
4 to the claim above, we get

t<ni- (2ro + )V/% < ni - (2ni +4)1/2,
U

We are now ready to state the algorithm which we show in Theorem 1 to find a Euclidean



decomposition with minimum sum.

Algorithm 1: Sum Minimization

if n < |/n] - (lv/n] +1) then
1 a < 0.
2 | whilen < (|\v/n] —a) - (|vVn]+a+1)do
L a+a+1.
3 | a1 |Vn]—a, fre|Vn]+tatl, nen—ar- b
T« ni - (2a + 3)/2.
5 for 1 <t <7T do
1. Calculate s = h\/ﬁnj_tJ —|Vn] and z == n — (|/a] —t) - (va] + s).
2. if 2|\/n]+s—t+2z <o+ B+ then
L a1 < V] =t B < V] + 5, g < 2
else
| apy1 o, Beyr < Br, Yer1 < Ve

else
r < 0.

6 while n < (|v/n| —7) - ([v/n] +r+2) do
L r<r+1.
7| o Wil —r B [Vnl+r+l e n—or B
T < ni - (2r + 4)1/2.
for 1 <t <7T do
1. Calculate s = h\/ﬁnj—tJ — |v/n] and z :=n — (|/n] —t) - (|v/n] + s).
2. if 2|\/n]+s—t+2z <o+ B+ then

L a1 < V] =t B < V] + 5, g < 2

else
| g1 < gy Berr < Bey Yer1 <

10 Return (p,q,7) := (ar, Br,77)-

Theorem 2. Algorithm 1 terminates in O(n%) steps, and its output (p,q,r) of satisfies
p+q+r=min({(x,y,2) | (z,y,2) is a solution of equation (1) })

Proof. First suppose that n < [/n] - ([v/n] +1). Let (x1,91,21) be a solution of Equation
(1) producing the minimum sum and let s and ¢ be as in Equation (8). Also let zg, yo, and
2o be as in (7). If the minimum possible sum is less than zg + yo + 20, then by the proof of
Proposition 2, we have ¢ < ni - (2a + 3)% if n < |/n] - ([v/n) + 1), where 7 and a are the
values as in Lemma 3, which are calculated by the algorithm. The algorithm goes through
every such value of ¢ and records each new tuple producing a smaller sum, returning the tuple
giving the smallest sum, which is, by the argument above, the minimum. If the minimum sum



equals zg + yo + 20, then the algorithm by default returns the tuple (xo, yo, z0). An analogous
argument holds for the second part of the algorithm, which runs if n > [/n] - (|v/n] + 1).

Finally, note that the algorithm calculates a in (’)(ni) steps, by Lemma 3, and then performs
T=ni. (2ni +3)1/2 = (’)(n%) more iterations, thus having a total complexity of (’)(n%). O
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