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Introduction
Let m ≥ 1 and q be a power of a prime p. Denote by Fq the finite
field of order q. The extension field Fqm then forms a vector space
of dimension m over Fq, and F∗

qm is a cyclic group, whose
generators are called primitive elements.

Definition (Normal Element)
An element α ∈ Fqm is called a normal element over Fq if all its
Galois conjugates, i.e. the m elements {α, αq, . . . , αqm−1}, form a
basis of Fqm as a vector space over Fq. A basis of this form is
called a normal basis.

Theorem 1 (Primitive Normal Basis Theorem
([Lenstra and Schoof, 1987]))
Every finite field extension possesses an element which is
simultaneously normal and primitive.
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Introduction

Definition (k-normal element)
An element α ∈ Fqm is called k-normal if

dimFq

(
spanFq

{
α, αq, . . . , αqm−1

})
= m − k.

An element α is 0-normal if and only if it is normal. The only
m-normal element in Fqm is 0.

Definition (Polynomial Euler-Phi)
Let f ∈ Fq[x ], deg f = m > 0. Then Φq(f ) is defined as the order
of the group

(
Fq[x ]
⟨f ⟩

)×
. In other words, Φq(f ) gives the number of

polynomials with degree < m that are co-prime to f .
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Introduction

▶ For arbitrary m, and k, 0 < k < m − 1, no general rule for the
existence of k-normal elements or for their number nk , when
they exist, is known. Many special cases have been dealt with.

▶ Relation to multiplicative structure of the field: given
d | qm − 1, how many k-normal elements with order d are in
Fqm? One is interested in establishing analogous results to the
Primitive Normal Basis theorem [Lenstra and Schoof, 1987].

▶ Existence of 1-normal primitive elements was posed with a
partial solution in [Huczynska et al., 2013] and was fully
answered in [Reis and Thomson, 2018].
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Background Definitions and Results

Consider the structure of Fqm as an Fq[x ]-module under the action( n∑
i=0

aix i

)
· α =

n∑
i=0

aiα
qi
, α ∈ Fqm .

For any α ∈ Fqm let Ann(α) denote the annihilator ideal with
respect to this action. Note that we always have
(xm − 1) · α = xqm − x = 0, so xm − 1 ∈ Ann(α)

Definition (Ord function)
Define the function Ord : Fqm → Fq[x ] as follows. For any
α ∈ Fqm , Ord(α) is the unique monic polynomial such that

Ann(α) = ⟨Ord(α)⟩ in Fq[x ].
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Background Definitions and Results

Theorem 2 ([Huczynska et al., 2013, Theorem 3.2])

Let α ∈ Fqm and gα(x) :=
∑m−1

i=0 αqi · xm−1−i ∈ Fqm [x ]. Then the
following conditions are equivalent:
▶ α is k-normal.
▶ gcd(xm − 1, gα(x)) over Fqm has degree k.
▶ deg(Ord(α)) = m − k.
▶ The matrix

Aα :=


α αq αq2 · · · αqm−1

αqm−1
α αq · · · αqm−2

...
... · · ·

...
...

αq αq2
αq3 · · · α

 has rank m − k.
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Number of k-Normal Elements

Theorem 3 ([Huczynska et al., 2013, Theorem 3.5])
The number of k-normal elements of Fqm over Fq equals 0 if there
is no h ∈ Fq[x ] of degree m − k dividing xm − 1; otherwise it is
given by ∑

h|xm−1
deg(h)=m−k

Φq(h),

where divisors are monic and polynomial division is over Fq.

▶ xm − 1 factorizes over Fq into the product of cyclotomic
polynomials Qd(x) with degrees dividing m. For p ∤ d each
irreducible factor of Qd(x) has degree ϕ(d)

r , where r is the
multiplicative order of d mod q [Lidl and Niederreiter, 1997].

▶ No known closed formula for r , so there is no closed-form
complete factorization of xm − 1 over Fq.
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▶ For k = 0, the formula in Theorem 3 yields the well-known
value Φq(m) for the number of normal elements over in Fqm

[Lidl and Niederreiter, 1997].

▶ Since xm − 1 always has the divisor x − 1 of degree 1 and
hence also a divisor of degree m − 1 (and since Φq(f (x)) ̸= 0
for any nonzero polynomial f (x)), we always have 1-normal
and (m − 1)-normal elements in Fqm .

▶ The only values of k for which k-normal elements are
guaranteed to exist for every pair (q, m) are 0, 1 and m − 1
[Huczynska et al., 2013].

▶ If q is a primitive root modulo m, xm−1
x−1 is irreducible and so

for 1 < k < m − 1, k-normal elements do not exist
[Reis and Thomson, 2018].
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Main Theorem on Cardinality

Theorem 4
[Tinani and Rosenthal, 2021] Let nk denote the number of
k-normal elements in Fqm . If nk > 0, then

nk ≥ Φq(xm − 1)
qk .

Proof (Sketch).

One may prove that there is a group action of
(

K[x ]
(xm−1)

)×
on the

set Sk of all k-normal elements. An upper bound on |Stab(α)| can
be found using Theorem 2. The rest is an application of
Orbit-Stabilizer Theorem.
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▶ The proof follows the approach in [Hyde, 2018], which
handles the case k = 0 and obtains the exact number of
normal elements using the freeness and transitivity of the
group action.

▶ For k > 0 it is clear that for every k-normal α, there exists
u ∈ K[G ] such that u · α = α. However, it is unclear whether
such a u always lies in K[G ]× and if the action is transitive.

▶ If a k-normal element α exists, then the lower bound is, in
fact, for the number of k-normal elements lying in a single
orbit, and therefore in spanFq{α, α

q, αq2
, . . . , αqm−1}.
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Existence of k-Normal Elements

▶ There exist values of q, m and k such that no k-normal
element over Fq exists in Fqm . E.g. q = 2, m = 10, k = 3, 7.

▶ Some results on the number of k-normal elements
automatically imply their existence, E.g. [Saygı et al., 2019]
for m a power of the characteristic.

▶ Some other results on the numbers are in implicit form,
asymptotic (E.g. [Huczynska et al., 2013]), or assume the
existence of at least one k-normal element (E.g. this paper).

Simran Tinani An introduction to k-normal elements over finite fields



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction Number of k-Normal Elements Existence of k-Normal Elements Normal Elements with Large Multiplicative Order Further Research Problems

Existence of k-Normal Elements

Theorem 5 ([Reis, 2019])

Let q be a power of a prime p and let m ≥ 2 be a positive integer
such that every prime divisor of m divides p · (q − 1). Then
k-normal elements exist for all k = 0, 1, 2, . . . ,m.

▶ Concrete, significant extension of the case m = pr , but prime
factorization of m is still restricted to a particular form.

▶ Our theorem shows that under weaker constraints on m (m
must have a ”sufficiently large” common divisor with qm − 1),
k-normal elements exist for k above a minimum lower bound.

▶ When p ∤ m, our theorem is a generalization of this result.
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A Number Theoretic Prerequisite

Proposition 1

[Tinani and Rosenthal, 2021] Let a and m be arbitrary natural
numbers and suppose that m ∤ am − 1. Then m has a prime factor
that does not divide am − 1.

▶ The proof proceeds by induction on the largest exponent b of
a prime p dividing m.

▶ The proof was inspired by the proof of a similar result in
[Lüneburg, 2012, Theorem 6.3].
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Main Theorem on Existence

Theorem 6 (Sufficient Conditions for Existence)
[Tinani and Rosenthal, 2021]
▶ If m | (qm − 1), then k-normal elements exist in Fqm for every

integer k in the interval 0 ≤ k ≤ m − 1.
▶ If m ∤ qm − 1, let d = gcd(qm − 1, m). Assume that√

m < d. Let b denote the largest prime divisor of m that is a
non-divisor of qm − 1. Then, for k ≥ m − d − b + 1, k-normal
elements exist in Fqm . In particular, if m is prime and
m ≤ d + b − 1, then k-normal elements exist for every k in
the interval 0 ≤ k ≤ m − 1.

Note that if p ∤ m and the hypothesis of Theorem 5 holds, i.e.
every prime factor of m divides p · (q − 1) then Proposition 1 says
that we are in the case m | qm − 1.
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Proof (Sketch).
▶ Fqm contains k-normal elements ⇐⇒ xm − 1 has a divisor of

degree m − k.
▶ If m | qm − 1, xm − 1 splits into linear factors over Fq, and

m − k linear factors combine to give a factor of degree m − k.
▶ If m ∤ qm − 1, write

xm − 1 = (x − α1) · (x − α2) · . . . · (x − αd) ·
∏
t | m

t ∤ qm−1

Qt(x),

▶ Proposition 1 says that we have a prime b such that Qb(x)
figures in the latter product. A combinatoric argument then
shows that if no k-normal element exists, then

k < m − d − ϕ(b) = m − d − b + 1.

Simran Tinani An introduction to k-normal elements over finite fields



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction Number of k-Normal Elements Existence of k-Normal Elements Normal Elements with Large Multiplicative Order Further Research Problems

Examples

Example
For q = 5, m = 6, we have

qm − 1 = 15624 = 0 mod 6

So, Theorem 6 shows that k-normal elements exist in Fqm for every
k ∈ {0, 1, . . . ,m}.
Here, Theorem 5 is not applicable because the prime 3 divides m
but not p · (q − 1) = 20.
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Example
For q = 8, m = 6, we have

qm − 1 = 262143,

and so
d = gcd(qm − 1, m) = 3 >

√
6.

The largest prime b that divides 6 and not 262143 is clearly 2.
So, Theorem 6 shows that k-normal elements exist in Fqm for every
k ≥ m − d − b + 1, i.e. for every k ≥ 2.
Since we know that 0- and 1-normal elements always exist in Fqm ,
we conclude that in this case k-normal elements exist for every
k ∈ {0, 1, . . . ,m}.
Here as well, Theorem 5 is not applicable because the prime 3
divides m but not p · (q − 1) = 14.
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Normal Elements with Large Multiplicative Order

▶ So far, we have looked at the “additive" structure of Fqm as
an Fq-vector space and as an Fq[x ]-module.

▶ It is also of interest to study the relation between these
additive structures and the multiplicative structure of F∗

qm .

Theorem 7 (Primitive Normal Basis Theorem,
[Lenstra and Schoof, 1987])
For every prime power q > 1 and every positive integer m there
exists an element a ∈ F∗

qm , with Ord(a) = xm − 1 and
ord(a) = qm − 1.

▶ One may wish to extend this and ask what pairs of
multiplicative and additive orders occur together in elements
of Fqm .
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Normal Elements with Large Multiplicative Order

Theorem 8
Suppose that (m, q − 1) = 1. Then Fqm has a normal element with
multiplicative order qm−1

q−1 .

Idea of Proof.
We showed that the techniques in the proof of the Primitive
Normal Basis Theorem in [Lenstra and Schoof, 1987] can be
adapted and extended to this case.
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Further Research Problems

Given a k-normal element α, does there exist another k-normal
element outside spanFq{α, α

q, αq2
, . . . , αqm−1}?

Given a k-normal element α, which of the subsets of
{α, αq, αq2

, . . . , αqm−1} with size m − k or smaller, apart from
{α, αq, αq2

, . . . , αqm−k−1} are linearly independent?

Under what circumstances is the group action of K[G ]× on Sk
free? Under what circumstances is it transitive?

Determine the existence of high-order k-normal elements α ∈ Fqm

over Fq, where high order means ord(α) = N, with N a large
positive divisor of qm − 1. [Huczynska et al., 2013, Problem 6.4]
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Thank you!
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