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1 Introduction 
 

In recent years, blockchain technology has emerged as a pivotal and extensively researched 

advancement, demonstrating diverse applications across various domains. Although the initial surge 

in public interest was triggered by the Bitcoin white paper [20], blockchain technology has since 

evolved to accommodate a wide range of use cases such as cryptocurrencies, smart contracts, supply 

chain management, tokenization of assets, intellectual property protection, etc.  

In loose terms, a blockchain is a decentralized ledger that records information across a network of 

computers and aims to preserve its accuracy and integrity without the appeal to a central authority. 

On the other hand, a smart contract is a self-executing contract with machine-encoded terms of the 

agreement. Smart contracts run on a blockchain network, utilizing its framework to execute and 

record contractual actions without the need for a central authority. This paper is an exploration of 

the functional and security aspects of blockchains, and more specifically, smart contracts. 

In the first two sections of this paper, we explain the meaning, working principles, and key 

components of a blockchain, describing the role of cryptography and consensus mechanisms in 

shaping its architecture. We then provide a closer examination of smart contracts, which, we will see, 

are a special case of transactions on a blockchain. This discussion includes an explanation of some 

key terms related to the Ethereum network, which is the best-known blockchain hosting smart 

contracts. In the second half of the paper, we delve in-depth into the security aspects of both 

blockchain networks in general, and smart contracts specifically. We describe some of the most well-

known vulnerabilities in the design and implementation of blockchains and smart contracts, 

providing some real-world examples of exploits in the past and some well-known mitigation 

strategies.  

2 Distributed Networks, Decentralization, and Blockchain 
 

2.1 Decentralized, distributed, and peer-to-peer systems 
 

A distributed system is one in which multiple independent entities called nodes communicate and 

collaborate to achieve a common goal and provide a unified service. Decentralization is an 

architectural approach to implementing software systems, under which the network of components 

system is designed to have no central point of control, authority, or failure. In a decentralized system 

(in contrast to a centralized system), decision-making, control, and resources are distributed across 
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multiple nodes or entities. A peer-to-peer (P2P) system is a distributed network where individual 

participants ("nodes") communicate and share computational resources (e.g., processing power, 

storage capacity, or information) directly with each other without the need for a centralized 

authority. Many peer-to-peer systems exhibit decentralized characteristics, but it is possible to have 

P2P systems with varying degrees of centralization.  

Many blockchain networks, such as Bitcoin and Ethereum, are both distributed and decentralized 

[11]. Each node in the network has a copy of the entire blockchain, and decisions are reached 

through a consensus mechanism without the need for a central authority. 

 

2.2 Defining Blockchain 
 

The blockchain is a distributed, decentralized peer-to-peer system of ledgers (a chronological record-

keeping system) utilizing an algorithm, which records information across a network of computers 

(nodes) in the form of ordered and connected blocks, using cryptographic tools to maintain its 

integrity, security, transparency, and tamper-resistance.  

Each node maintains its copy of the ledger. Transactions (state-changing functions) are grouped into 

blocks, and each block contains a reference to the previous block, thus forming a chain. This ensures 

the chronological order and immutability of the data. Once a block is added to the blockchain, it is 

nearly impossible to alter or delete. Immutability enhances the security and reliability of the ledger. 

 

3 Working of a blockchain  
 

As discussed in the previous section, blockchain networks are decentralized, so there is no central 

authority governing the system. In the absence of a central authority, alternative mechanisms are 

required to ensure that nodes across the network collectively agree on the validity and order of the 

data and to make the system robust, secure, and immutable. 

To understand how a blockchain works, one needs to grasp the fundamentals of cryptography and 

consensus algorithms. 

 

3.1 Cryptography 
 

Cryptography plays a pivotal role in the correct functioning and security of the blockchain. Two vital 

cryptographic tools involved in the blockchain are hash functions and digital signatures. 

 

3.1.1 Hash Functions 
 

A hash function h is a mathematical function that unambiguously maps arbitrarily large words on an 

alphabet A of letters to words of fixed length n: 
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Such a function therefore performs a compression action on messages, returning fixed-length 

outputs. Most cryptocurrencies use the alphabet A={0,1} and a value of n typically between 160 and 

256. 

A collision of h is a pair of distinct strings (x, x’) over the alphabet such that h(x)=h(x’). The hash 

function h is called collision-resistant if it is infeasible to compute a collision of h. It is called 

preimage-resistant if given any fixed length string s, it is computationally infeasible to compute a 

string x such that h(x)=s. A cryptographic hash function is a hash function which is efficiently 

computable, preimage-resistant, and collision-resistant.  

In a blockchain, hash functions are used to identify blocks and ensure transaction integrity. Before 

transactions are added to a block, they are hashed, and compiled into a Merkle Tree, which is a 

layered data structure, with each layer's values containing the combined hash of two of the hash 

values in the previous layer. The hashes are computed recursively until a single hash value (root) is 

obtained. The block's overall hash is computed from the root hash of the Merkle tree and the 

previous block's hash value.  

A change to one of the transaction hash values in the Merkle tree would thus affect all the 

subsequent layers of the tree and so the block's overall hash, and therefore also the hash of all the 

blocks following it. Owing to the collision-resistance of the hash function, making all these changes is 

extremely computationally expensive. This property therefore protects the blockchain transactions 

from tampering. Further, each block contains a hash of the previous block's header. This ensures that 

each block is linked uniquely to the one preceding it and maintains the order of the blocks. 

 

3.1.2 Digital signatures 
 

A digital signature is a cryptographic tool used to provide authenticity, integrity, and non-repudiation 

to digital messages, thus serving as a digital equivalent of a handwritten signature. 

Each digital signature involves a cryptographic private key and its corresponding public key. The 

private key is known only to the signer and is used to generate the signature. The corresponding 

public key is made available to others and is used to verify the digital signature.  

In most cases, the signer first applies a hash function to the message to be signed, and then uses 

their private key to encrypt the hash value, thus creating the digital signature. The result is a unique, 

encrypted signature that is specific to both the content and the private key. For verification, the same 

hash function is applied to the message received, and the public key is used to decrypt and verify the 

digital signature. If the decrypted signature matches the generated hash value, the signature is valid. 

Digital signatures play a crucial role in ensuring the security and authenticity of data within a 

blockchain by associating each transaction reliably to the node which initiated it.  When a participant 

Each transaction is signed by the participant using their private key before it is broadcast to the 

network. Other participants can use the sender's public key to verify the digital signature. Once a 

transaction is verified and added to a block, the digital signature becomes an integral part of that 

block. Any attempt to alter the content of a block would therefore require recalculating the digital 

signatures for all subsequent blocks, which is computationally infeasible. 
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Most cryptocurrencies use the ECDSA (Elliptic-Curve Digital Signature Algorithm) with the elliptic 

curve “secp256k1”. Here, the secret key is 256 bits long and the public key is 512 bits long.  

For a more detailed exploration of these concepts, as well as others in cryptography, the interested 

reader is referred to [15, 26]. 

 

3.2 Consensus Mechanism 
 

A consensus mechanism is a protocol that allows nodes in a decentralized, trustless network to agree 

on the state of the blockchain. Once a transaction is confirmed through the consensus process and 

added to a block, it is considered irrevocable. Consensus mechanisms play a vital role in maintaining 

the integrity and security of the entire system. 

In a public peer-to-peer system, it is imprudent to assume that every node always behaves 

innocuously and correctly. Byzantine Fault Tolerance is a property of a distributed system that allows 

it to continue operating reliably and reach consensus, even in the presence of a certain number of 

faulty or malicious nodes.  

There are various types of consensus mechanisms, each with its own approach to achieving 

agreement among nodes. Below, we explain the two most used consensus mechanisms. 

 

3.2.1 Proof of Work (PoW) 
 

Under this consensus mechanism, nodes are called miners and compete to validate transactions and 

add new blocks to the blockchain. Bitcoin, the first and most well-known cryptocurrency, relies on 

PoW.  

Proof of Work proceeds as follows. Transactions are first broadcast to the network and are collected 

and verified by miners. Miners then select a set of unconfirmed transactions to include in a new 

block. To add a new block, a miner must solve a computationally intensive mathematical puzzle. The 

puzzle is typically constructed using a cryptographic hash function and requires the miner to 

compute a candidate "nonce" which is a preimage of a certain subset of hash values satisfying 

specific predefined criteria. For example, in the case of Bitcoin, the criterion is that the hash value 

must have a certain number of leading zeros. There are multiple correct solutions to this puzzle, but 

to find any of them, the miner must iterate randomly through the set of all possibilities for the nonce 

(brute force).  

The first miner to find a valid hash value broadcasts the new block to the network, along with the 

solution to the cryptographic puzzle (the nonce). Other nodes in the network verify the validity of 

the solution. Unlike the brute-force search for the nonce, the validation process is quick and efficient, 

as it requires just a single computation by each node. If it is correct, the nodes reach a consensus 

that this miner has the right to add the new block to the blockchain. As a reward for their effort and 

computational work, the successful miner receives some newly created cryptocurrency as a reward, 

(e.g., bitcoins) and any transaction fees from the transactions included in the block. 

A crucial drawback of PoW is that it is extremely energy-intensive and wasteful by default, and 

therefore has a significant negative environmental impact. 
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3.2.2 Proof of Stake (PoS) 
 

Proof of Stake (PoS) is an alternative consensus mechanism used in blockchain networks to achieve 

agreement on the state of the blockchain. In PoS, nodes are called validators. Unlike Proof of Work 

(PoW), where participants (miners) compete through computational work, PoS chooses validators to 

create new blocks and validate transactions based on the amount of cryptocurrency they hold and 

are willing to "stake" as collateral. The more cryptocurrency a validator stakes, the higher the chance 

they have to be selected to create a new block. The selection process may also include a 

randomization algorithm. 

Transactions are broadcast to the network, and validators collect and verify these transactions. The 

chosen validator creates a new block, including a set of transactions, and signs it with their private 

key. Other nodes in the network then verify the validity of the block and the signature using the 

validator's public key. If the block is valid, it gets added to the blockchain, and the validator is 

rewarded with new cryptocurrency (block reward) and sometimes also transaction fees from the 

transactions in the block. 

To discourage malicious behaviour, PoS systems often include a mechanism called slashing. If a 

validator is found to be acting dishonestly, such as by double-signing or attempting to create an 

invalid block, a portion of their staked cryptocurrency may be "slashed" or forfeited. Validators have 

a vested interest in acting honestly because malicious behavior risks losing a portion of their 

collateral funds.  

One of the key advantages of PoS over PoW is its energy efficiency and faster transaction finality in 

the blockchain. Since PoS does not require the same level of computational work as PoW, it is far 

more environmentally friendly.  

 

4 Applications of blockchain technology 
 

In broad terms, the purpose of a blockchain is to help achieve and maintain the integrity of a 

distributed software system. More specifically, the blockchain is the tool used to create a secure, 

transparent, and decentralized system for recording, verifying, and transferring ownership of assets. 

Blockchain's features such as decentralization, immutability, and transparency provide trust in the 

integrity of the recorded data and contribute to the reliability of ownership management in diverse 

industries, including finance, real estate, supply chain, and more. This makes blockchains suitable for 

various applications beyond cryptocurrencies, including smart contracts, supply chain management, 

and decentralized finance. 

Some prominent applications of blockchains are cryptocurrencies (e.g., Bitcoin, Ethereum, etc.), 

decentralized finance (borrowing, lending assets without a centralized intermediary like a bank), 

supply chain data management and tracking, healthcare data management and storage, voting 

systems, digital identity management, digital asset (e.g., digital art, intellectual property) 

management real estate data recording, and smart contracts. In the rest of this paper, we will be 

concerned only with smart contracts. 
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5 Smart Contracts 
 

A smart contract is a self-executing tool with coded rules that automate and enforce the execution of 

contractual agreements, reducing the need for intermediaries in various industries, including legal, 

insurance, and real estate. As opposed to traditional legal contracts, smart contracts are written in 

formal code and interpreted by machines. They automatically execute and enforce themselves when 

predefined conditions are satisfied. 

Smart contracts run on blockchain platforms and thus inherit the decentralized and immutable 

nature of the blockchain, thereby enhancing trust in the execution of agreements. For example, 

Ethereum is a blockchain platform that supports smart contracts. Smart contracts function as 

decentralized custodians of digital assets and allow the transfer of value and information without the 

need to trust a third party. 

Smart contracts have numerous advantages including speed, independence of third parties, 

reliability, non-repudiation, and immutability. However, they also have drawbacks, like lack of 

regulation and governance, difficulty in making changes and fixing bugs, non-reversibility of 

transactions, and difficulty in implementation [19]. 

 

5.1 Ethereum 
 

Smart contracts and their integration into blockchain technology were introduced by Ethereum with 

its mainnet launch on July 30, 2015 [7]. Ethereum is a decentralized blockchain platform that 

facilitates the creation and deployment of decentralized applications (DApps) and smart contracts. 

These contracts run on the Ethereum Virtual Machine (EVM), a decentralized runtime environment. 

Every node in the Ethereum network is responsible for upkeeping the network's state. This state 

encompasses a record associating each account address with its respective ether balance, nonce, 

storage, and program code.  

Ethereum has its native cryptocurrency, Ether (ETH), used to pay for transaction fees, computational 

services by validators, and interactions with smart contracts on the Ethereum network. Gas is a unit 

used to measure the computational work or resources required to perform operations on the 

Ethereum network, such as executing smart contracts, sending transactions, or interacting with 

decentralized applications (DApps). Gas cost is denominated in ether. When one initiates a 

transaction or executes a smart contract, one specifies a gas limit (maximum amount of gas one is 

willing to spend) and a gas price (amount of ether one is willing to pay per unit of gas). The higher 

the gas price, the faster your transaction is likely to be processed.  

Ethereum smart contracts are typically written in Solidity [27], a high-level programming language 

specifically designed for this purpose. 

Ethereum has introduced various standards for tokens, which are digital asset representatives. The 

most important examples are ERC-20 for fungible tokens and ERC-721 for non-fungible tokens (NFTs). 

These standards establish consistent regulations and interfaces, facilitating the development and use 

of tokens on the Ethereum blockchain. 



7 
 

For a more thorough treatment of the Ethereum network, the interested reader is referred to [7]. 

5.2 Applications  
 

Smart contracts are versatile and can be applied to various industries and use cases. They can be 

utilized to create and oversee tokens on blockchains, automate financial processes in DeFi, enforce 

and automate agreements in supply chain management, manage permissions in digital identity 

systems, and more. Two important and unique applications of smart contracts are decentralized 

autonomous organizations (DAOs) and decentralized applications (dApps).  

A DAO is an autonomous digital entity that represents a new type of organizational structure [14]. In 

a DAO, rules and actions are encoded in smart contracts instead of being enforced by a small group 

of people, as is the case in a traditional company. DAOs enable decentralized decision-making 

through proposals and voting mechanisms. Members can submit proposals, and the community 

votes on whether to approve or reject them. DAOs operate on a blockchain, which means that they 

inherit its transparency and immutability. All actions, proposals, and transactions are recorded on the 

blockchain and can be audited by anyone. "The DAO" was a specific and influential project that 

existed on the Ethereum blockchain and aimed to function as a decentralized venture capital fund. 

However, The DAO is most famously remembered for a critical exploit that had significant 

consequences in the Ethereum community. We will discuss this exploit in detail later in this paper. 

Decentralized applications (dApps) are software applications that operate on a peer-to-peer (P2P) 

network of computers, instead of a single computer. A dApp comprises a front-end, which is similar 

to a conventional web application, and a back-end, which is blockchain-based. The primary 

difference is that a dApp interacts with smart contracts that govern the back-end logic and with the 

blockchain data structure, rather than with a traditional database. 

 

5.3 Deployment and Working  
 

Smart contracts exist on a blockchain as transactions. In fact, in Ethereum, transactions are broadly 

of two types: regular transactions and smart contract transactions. Both types of transactions are 

subject to the consensus mechanism of the network. Deploying a smart contract is a one-time 

transaction that initializes the contract and makes it available for future interactions.  

Before submission to the chain, the smart contract code is compiled into bytecode, which is a low-

level representation that is executable by the virtual machine of the blockchain. All confirmed 

transactions added to the chain, whether regular or involving a smart contract, become final and 

irreversible. Unlike regular transactions, smart contract transactions can include invocations of 

specific functions within a deployed smart contract. Each such invocation is also treated as a separate 

transaction. 

Developers of smart contracts use a programming language that is compatible with the underlying 

blockchain platform. For instance, Solidity for Ethereum. Apart from Ethereum, several other 

blockchain platforms also support smart contract functionality. Some examples are Binance Smart 

Chain (BSC), Cardano, Solana, Polkadot, and Algorand. 

A general reference to better comprehend the workings of a smart contract is found in [29, 4]. 
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6 Security of Blockchain and Smart Contracts 
 

With the fundamental concepts, important terms, working principles, and some use cases of 

blockchains and smart contracts being explained, we now turn to the security aspects.  

When we say that a blockchain is secure, it means that the blockchain system has measures in place 

to prevent unauthorized access, tampering, and attacks. Additionally, it ensures that the data and 

transactions are maintained with integrity, confidentiality, and availability. The security of blockchain 

is crucial for preserving the reliability, trustworthiness, and functionality of the technology. 

Since smart contracts are built on blockchain technology, a disruption or attack on the underlying 

blockchain of a smart contract could also cause it to malfunction. While some attacks are more 

directly associated with the underlying blockchain infrastructure, the security and reliability of smart 

contracts depend on the robustness of the entire blockchain network. 

In our discussion of security, we therefore first talk about the general security of a blockchain, 

including some common attack vectors and examples, and then later discuss the more specific 

aspects of smart contract security. 

 

6.1 Attack Methods on a Blockchain 
 

A general reference for this section can be found in [22]. 

 

51% Attack 

In a proof-of-work blockchain, a 51% attack occurs when a single entity or a group of entities controls 

more than 50% of the network's mining or hashing power. Since hashing power is directly 

proportional to the likelihood of successfully adding new blocks to the blockchain, this attack gives 

the attackers majority control over the network's consensus mechanism, allowing them to 

manipulate transactions, double-spend, and potentially disrupt the normal functioning of the 

blockchain. 

The consequences are multifaceted. The primary concern is the possibility of double-spending, 

where the attacker can spend the same cryptocurrency units in multiple transactions by creating a 

fork of the blockchain. This is achievable because the attacker controls the majority of the mining 

power and can outpace the rest of the network when adding new blocks. Apart from double-

spending, the attacker can also perform block reorganization by disregarding the legitimate 

blockchain and produce their own version of the blockchain. Once their version exceeds the length of 

the honest blockchain, it becomes the accepted version. With majority control, the attacker can 

prevent certain transactions from being confirmed, exclude or delay specific transactions, and more. 

There are several ways to prevent a 51% attack on a blockchain. One way is to encourage more 

independent miners and mining pools, which helps spread out the hashing power. This makes it 

harder for one entity to control the majority. The blockchain designer can also require more 

confirmations for transactions to be considered secure. This gives the network more time to detect 

and respond to a potential attack. Regular updates and network upgrades can also change the 
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consensus algorithm, making it more difficult for an entity to accumulate a majority of the hashing 

power. Another approach is to gradually switch to using Proof-of-Stake (PoS) or other consensus 

mechanisms that are less vulnerable to 51% attacks. 

Sybil Attack 

In a Sybil attack, a single attacker creates multiple fake nodes to take control of a significant portion 

of the network. This can enable the attacker to manipulate the consensus, or disrupt the intended 

behavior of a smart contract.  

In decentralized networks that rely on consensus mechanisms like proof-of-work or proof-of-stake, 

attackers can influence the decision-making process by controlling a majority of nodes. This is 

especially concerning in systems with financial incentives, such as cryptocurrencies, where an 

attacker could use their control to exploit the system for financial gain. For example, they could 

manipulate transaction outcomes, game reward systems, or launch attacks to undermine the value of 

the cryptocurrency. If the network involves storing and retrieving data, controlling multiple nodes 

can allow an attacker to manipulate the data, which could lead to the corruption or alteration of the 

stored data. This could jeopardize the reliability of the entire system. Finally, attackers can partition 

the network by strategically controlling nodes. This can be used to isolate specific nodes or regions 

from the rest of the network, disrupting communication and creating isolated sub-networks. 

To mitigate Sybil attacks, there are several strategies that can be implemented. For instance, a 

reputation system can be used to identify and discount the influence of suspicious nodes. Consensus 

mechanisms such as proof-of-work and proof-of-stake can also be employed to make the attack 

economically infeasible. Furthermore, requiring proof of a real-world resource or social validation 

mechanisms for the creation of a node can also be an effective approach to mitigate the risks of Sybil 

attacks. 

 

Selfish Mining 

Selfish mining is a strategy used by miners or mining pools with a lower hash rate. Instead of sharing 

the mined blocks with the network, they deliberately keep them hidden. This disrupts the normal 

block propagation process and gives the attacker an advantage in mining rewards. Selfish mining is 

mainly a risk to the mining process in proof-of-work blockchains. 

 

Eclipse Attack 

Selfish mining is a tactic employed by miners or mining pools with a lower hash rate. Instead of 

sharing the blocks they mine with the network, they intentionally keep them concealed. This upsets 

the standard block propagation process and grants the attacker an edge in mining rewards. Selfish 

mining is primarily a threat to the mining process in proof-of-work blockchains. 

 

Distributed Denial of Service (DDoS) Attacks 

A Distributed Denial of Service (DDoS) attack is a type of cyber attack that involves flooding a target 

system with a massive amount of traffic from multiple compromised computers or systems. This 

flood of traffic overwhelms the target system, making it unavailable or significantly reducing its 
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performance. In the context of blockchain, DDoS attacks can be particularly disruptive to the 

underlying blockchain network and decentralized applications (DApps) built on top of it. DDoS 

attacks can target nodes, mining pools, or other components of the blockchain network, causing 

disruptions that make it difficult for legitimate users to access or participate in the network. 

 

Cryptographic Threats  

The security of a blockchain is dependent on the effectiveness of the cryptographic protocols it 

employs. If there are any vulnerabilities in the applied cryptography tools, then those same issues 

will be present in the blockchain. A potential example would be the possibility of quantum 

computers undermining the security of current cryptographic algorithms used in blockchain systems. 

 

6.2 Attack Methods on a Smart Contract 
 

As discussed earlier, the security and reliability of the blockchain network is crucial for the proper 

functioning and safety of smart contracts built on it. Therefore, any vulnerability in the network can 

also affect the security of smart contracts. In addition to this, smart contracts can have errors and 

loopholes in their code, which can be exploited by attackers to launch various types of attacks, 

leading to unexpected results and potential loss of funds. Even minor logical errors in the smart 

contract code can cause significant damage, making it important to thoroughly test and review the 

code before deployment. 

Below, we discuss in detail some of the best-known vulnerabilities associated with smart contracts. A 

general reference for this section can be found in [19]. 

 

6.2.1 Reentrancy Attacks 
 

Smart contracts often interact with each other by calling functions in other contracts. When contract 

A calls a function in contract B, this is known as an external call.  

A procedure is considered re-entrant if it can be interrupted during its execution, resumed, and 

completed without any errors. Reentrancy happens when a function in a contract that makes 

external calls can be maliciously re-invoked before the current execution of state changes is 

completed. This enables attackers to repeatedly execute certain functions and tamper with the 

contract's state in unintended ways. A reentrancy attack is, therefore, a manipulation of the order of 

execution and the way state changes and gas are handled. 

As an example within a centralized system, consider an online banking system that checks account 

balance only at the initialization step. This would allow a user to initiate several transfers without 

submitting any of them. The banking system would confirm that the user’s account holds a 

sufficient balance for each transfer. If there was no additional check at the time of the actual 

submission, the user could then submit all transactions and potentially exceed the balance of their 

account. 
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6.2.1.1 REAL-WORLD EXAMPLE—THE DAO HACK 

 

The DAO [14] was a project for decentralized investment crowdfunding, based on smart contracts on 

the Ethereum blockchain. The smart contract allowed a funding project to withdraw Ether if it 

received adequate support from the DAO community. However, there was a flaw in the transfer 

mechanism, whereby the ether would be transferred to the external address before updating its 

internal state and noting that the balance had already been transferred. 

The DAO contract included a fallback function, which is a function that is executed when a contract 

receives Ether but the transaction doesn't match any of its existing function signatures (or whenever 

a transaction attempts to call a method that the smart contract does not implement). The fallback 

function was designed to allow DAO token holders to withdraw their Ether.  

In 2016, an attacker exploited this vulnerability to drain approximately 3.6 million Ether (ETH) from 

The DAO [1] by using a malicious contract to repeatedly call the DAO's fallback function before the 

state changes (e.g., updating the balance) were finalized. This incident led to a contentious hard fork, 

resulting in the creation of Ethereum (ETH) and Ethereum Classic (ETC) as separate blockchains with 

the former following the fork and the latter maintaining the original, unaltered blockchain. 

To prevent reentrancy attacks, code developers should ensure that state changes are made before 

interacting with external contracts and include a Boolean variable in the code to serve as a 

reentrancy guard.  

 

6.2.2 Integer Overflow and Underflow 
 

An integer overflow occurs when the result of an arithmetic operation exceeds the maximum 

representable value for the given integer data type. For example, the maximum representable value 

by 8-bit unsigned integer is 255. If one tries to add 1 to 255, the result, 256, results in an overflow, 

and the value wraps around to 0. An integer underflow occurs when the result of an arithmetic 

operation goes below the minimum representable value for the given integer data type. For example, 

the minimum representable value by 8-bit signed integer is -128. If one tries to subtract 1, the result, 

-129, results in an underflow, and the value wraps around to 128. 

Improper handling of arithmetic operations can result in integer overflow or underflow, leading to 

unexpected values, manipulation of transactions, and system crashes. For example, if a spender 

convinces the account owner to send a transfer that decreases the spender’s allowance below 0, this 

would lead to an integer underflow and the spender receives an astronomical allowance that will 

likely enable them to withdraw the entire balance of the account. 

 

6.2.2.1 Real-world Example: BatchOverFlow 

 

In April 2018, a security breach known as "BatchOverflow" [6] occurred on the ERC-20 token contract 

of the BEC (BeautyChain) token. The BEC token contract's transferFrom function was designed to 

enable third parties (such as exchanges) to transfer tokens on behalf of a user with their approval. 

However, the function had an integer underflow issue when handling the value parameter. The 

attacker exploited this vulnerability by creating a malicious contract and manipulating the value 
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parameter to underflow, resulting in a large value. As a result, the smart contract credited a 

significant number of tokens to the attacker's account, as it failed to check for the underflow. 

To prevent integer underflows and overflows, it's essential to validate the results of arithmetic 

operations. For instance, when adding two unsigned integers a and b, the result a + b should be 

greater than or equal to a. If there's an overflow, this property is violated. Some programming 

languages and frameworks have libraries or functions that perform arithmetic operations securely, 

preventing overflows and underflows. 

 

6.2.3 TRANSACTION-ORDERING DEPENDENCE (TOD) AND FRONT RUNNING 
 

Recall that the order of processing transactions on Ethereum is determined by miners. Before a 

transaction is mined, it is visible in the "mempool" to all miners. Furthermore, in decentralized 

systems like Ethereum, pending transactions are visible to the public before they are confirmed and 

added to a block. These transactions often include information about the sender's intention to 

perform a trade, such as buying or selling a specific number of tokens. 

Front running is an unethical practice where someone takes advantage of confidential information 

about upcoming transactions to gain an unfair advantage. This occurs when someone takes 

advantage of the time delay between submitting a transaction and it being included in a block. The 

attacker can change the order of transactions to their benefit, which could impact the execution of a 

smart contract. 

For example, consider a situation where an investor submits a buy order for a certain asset at a 

certain price. Before this transaction is included in a block, an attacker who has access to confidential 

information about the investor's trade submits their own buy order at a slightly higher price. This 

causes the investor's transaction to be executed at a higher price than they intended, resulting in a 

loss for them and a profit for the attacker.  

Front running remains a challenging issue to mitigate in decentralized environments. Efforts to 

diminish front running include the development of decentralized exchanges (DEXs) and protocols 

that incorporate mechanisms to minimize the impact of this practice, such as batched transactions or 

using algorithms that obscure the true intentions of users until the last possible moment.  

 

6.2.3.1 Real world example: Bancor Front-Running Attack (June 2018): 

 

Bancor [5] is a decentralized liquidity protocol that operates on the Ethereum blockchain. It enables 

users to trade tokens through smart contracts without relying on a traditional order book. The 

pricing of tokens is determined algorithmically based on a formula that takes into account the token 

balances in smart contract reserves. However, in 2018, an attacker took advantage of the algorithmic 

pricing mechanism by placing multiple large transactions in quick succession. This manipulation of 

token prices was done to profit from the price changes caused by their own transactions, resulting in 

a significant disruption to the Bancor network. The time delay between the initiation of a transaction 

and its inclusion in a block was exploited, which affected the prices of some tokens. 
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6.2.4 Timestamp Dependence 
 

Smart contracts often rely on the timestamp of a block to carry out certain actions or make decisions. 

For instance, a contract may have a function that unlocks particular features or releases funds after a 

certain period of time. Exploitation of the timestamp in smart contracts happens when the 

timestamp is manipulated within the blockchain. 

The timestamp of a block in a blockchain is set by the miner who successfully mines the block. The 

timestamps must be increasing and cannot be too far into the future, or they will be rejected by the 

network nodes. Although the timestamp should represent the approximate time when the block was 

mined, it is not entirely tamper-proof. Miners have some flexibility in setting the timestamp, and it is 

expected to be within a certain range of the current time. Thus, miners who have incentives may 

manipulate timestamps. They may manipulate timestamps for financial gain, such as front running, 

actively excluding transactions of other investors, or delaying the execution of time-sensitive 

functions. 

Some mitigation strategies against this vulnerability class are to use relative time measurements like 

block numbers or block intervals along with timestamps, and to integrate with external oracles 

providing accurate and tamper-resistant timestamps. 

 

6.2.5 Denial of Service (DoS) Attacks 
 

A Denial of Service (DoS) attack on smart contracts involves malicious actors attempting to disrupt 

the normal operation of a smart contract or of the entire blockchain network. DoS attacks aim to 

overwhelm the resources of the targeted system, making it temporarily or permanently unavailable.  

There are several routes an attacker may take to achieve DoS. The most prominent method is 

through gas exhaustion, where an attacker deploys a smart contract that performs resource-intensive 

computations, creating a situation where users must pay an exorbitant amount of gas fees to interact 

with the contract. If a contract's logic is too complex or resource-intensive, it may exceed the gas 

limit, causing the transaction to fail. Another method to implement a DoS is through reentrancy. An 

attacker can deploy a contract that exploits vulnerabilities in another contract, causing it to enter an 

infinite loop or consume excessive gas during execution. This can lead to a denial of service by 

consuming all available gas in the network.  

Some methods of mitigating DoS attacks on smart contracts include the implementation of gas limits, 

the use of secure coding patterns, and thorough testing and audits to identify and address potential 

vulnerabilities. Additionally, it is essential to implement network-level solutions like congestion 

control mechanisms and gas price controls, which help to protect the broader blockchain network 

from DoS attacks. 

 

6.2.6 Faulty Random Number Generation 
 

Smart contracts require the use of random numbers for various purposes, like the generation of 

cryptographic keys, nonces, unique identifiers, salts, and initialization vectors, for selecting random 
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winners in lotteries and contests, shuffling lists, in gaming and gambling, and for determining the 

order of transactions in dApps. Thus, the proper generation of random numbers is crucial for 

ensuring fairness, security, and unpredictability. Using insecure random number generation methods 

can allow attackers to predict outcomes, leading to manipulations and exploits. 

However, by design, all computations on Ethereum must be deterministic, otherwise, the consistency 

of the state of the blockchain may be compromised. This means that if the same transactions are 

included in a block and the block is mined by the same miner, the resulting block hash will be the 

same for all nodes. Thus, pseudo-random number generation is used instead. Developers often 

attempt to use information related to the state of the blockchain for pseudorandom number 

generation. However, some block information, like block hash, can be partially predictable before a 

block is mined. If this information is the basis for randomness, an attacker might attempt to 

manipulate the block hash to predict the random number. 

 

6.2.6.1 Real World Example: Etheroll 

 

The "Etheroll" incident [25] on the Ethereum blockchain in 2017 exemplifies this vulnerability. 

Etheroll was a decentralized application (dApp) on the Ethereum blockchain that allowed users to 

participate in a dice game, with outcomes determined by a random number generator. The dApp 

utilized a random number generator based on the block hash of the Ethereum block in which the bet 

was placed. The attacker was able to influence the transactions included in a block, thereby 

increasing the likelihood of specific block hashes. The attacker thereby successfully predicted the 

block hashes, manipulated the random number generator to their advantage, and was able to 

consistently win bets, resulting in financial gains, leading to financial losses for Etheroll and its users. 

Since the Etheroll incident, various solutions and improvements have been proposed to enhance the 

security of random number generation in smart contracts. More robust randomness generation 

methods are encouraged, such as decentralized oracles, commit-reveal schemes, or cryptographic 

techniques. Some notable developments are Chainlink VRF (Verifiable Random Function), DECO 

(Decentralized Coin Toss), Kyber Network's Katalyst protocol upgrade, and the use of external Oracles 

and APIs. 

 

6.2.7 External call vulnerabilities 
 

Many smart contract vulnerabilities stem from the ability of smart contract functions to be triggered 

by other smart contracts, by what are known as external calls. These calls can involve sending funds, 

invoking functions in other contracts, or interacting with external services. 

Sometimes, a smart contract might make external calls without implementing proper checks or 

validations. This can create security issues, particularly if the external calls involve interacting with 

potentially malicious or untrusted contracts. For instance, if a contract assumes that an external call 

was successful without verifying the return status, it may result in unintended consequences. It is 

important to ensure that proper validations and checks are implemented when making external calls 

to prevent such security risks. 
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6.2.7.1 Real World Example: King of Ether 

 

One notable real-world example of a smart contract exploit resulting from a lack of external call 

validation is the "King of the Ether" incident of 2016 [16]. King of the Ether [17] was a decentralized 

game on the Ethereum blockchain where participants could become the "king" by sending Ether to a 

smart contract. The participant with the highest bid would become the new king, and they could 

increase their bid to maintain their status.  

The smart contract used a mechanism where the current king could transfer the crown (ownership) 

to another Ethereum address. However, the smart contract did not properly validate whether the 

recipient address was a valid contract or an externally owned account. Additionally, the function 

involved did not revert the state for failed transactions. When the contract attempted to compensate 

the previous king, it would mistakenly execute its fallback function. This allowed a new king to 

assume the throne without compensating the old king.  

An attacker took advantage of a flaw in the validation process and created a contract that could 

receive the crown. The malicious contract then launched a reentrancy attack by invoking the fallback 

function of the original King of the Ether contract before the state was updated. As a result, the 

attacker's contract was able to continuously call back into the original contract, repeatedly claiming 

the crown and draining Ether from the contract. 

 

6.2.8 Vulnerable Library Usage 
 

Certain functionalities of Ethereum contracts, such as on-chain data structures, token contract 

interfaces, and multi-signature wallets, can be reused in other contracts. These collections of 

functionalities, also known as libraries, are deployed to the blockchain once and then referenced 

multiple times by other smart contracts known as "client" contracts. It is important to note that if a 

library has a security vulnerability, all instances of the client contract using that library are exposed to 

risk. Additionally, because of the immutability of the blockchain, it is not possible to fix a vulnerable 

library by redeploying it to the same address. Some client contracts may also be hard-wired to the 

flawed library version, without an option to switch to a different library version. 

 

6.2.8.1 Real World Example: the Parity multi-signature wallet hacks 

 

There are two well-known examples of library exploits, namely the Parity multi-signature wallet 

hacks of 2017 [21]. The first vulnerability enabled unknown parties to access wallet contracts and 

transfer funds from the wallets, allowing for unexpected wallet ownership transfers. The second 

exploit occurred after the library was updated. Even after it was deployed, the update remained 

uninitialized, which made it possible to initialize the library and set its owner. 

 The library's stateful nature was a major cause of this exploit. However, it is unnecessary for a library 

to have its own state, as the client's state is updated whenever a library is called. Therefore, 

designing libraries to be stateless is a security best practice. Moreover, using established libraries and 

frameworks can significantly reduce the risk of smart contract library vulnerabilities. 
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7 Writing secure smart contracts 
 

As discussed in the previous section, attackers may exploit several routes to compromise the 

functionality and security of a smart contract. While each attack vector may have individual 

approaches for an optimal mitigation strategy, developers may adopt a set of fundamental 

overarching approaches to avoid security vulnerabilities and to ensure the correct functioning of the 

code in accordance with the requirements of the project.  

1. Understand previous attacks and existing sources of vulnerabilities and follow the latest best 

practices and standard design patterns to avoid them. 

2. The smart contract code should be written cleanly and documented properly and thoroughly 

3. The code should be thoroughly tested through a multi-layer approach prior to deployment, 

and all issues arising from tests should be appropriately addressed. This may include the use 

of automated analysis tools, as well as performing manual internal and external audits. Some 

well-known smart contract analysis tools are Oyente, Maian, Mythril, and Securify. Manual 

audits are essential to verify the logic of complex contract code. 

4. Every dApp should implement strong authentication principles. 

For a more in-depth explanation of these best practices, the interested reader is referred to [19, 29]. 
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