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Introduction
An algebraic number field, or simply a number field, is a finite extension of the rational numbers Q. When this degree is equal to two, the field is called
a quadratic number field (QNF). Every quadratic number field is of the form Q(

√
d) where d is a nonzero square-free integer. Over any number field K,

one may define the ring of integers OK = {r ∈ K : rn + a1r
n−1 + . . . an−1r + a0 = 0 for some ai ∈ Z}. The ring OK is a Dedekind domain, and thus,

the set H(K) of all its fractional ideals forms an Abelian group. The quotient of this group with the subgroup P (K) of all principal ideals is referred to
as the ideal class group.

I(K) :=
H(K)

P (K)

The order hK of the ideal class group is finite, and is called the class number of K.
The goal of this project is to study the ring of integers OK , the ideal class group I(K), and the class number hK of a quadratic number field K = Q(

√
d),

for different values of d. These objects may be understood better through the study of the theory of binary quadratic forms and the theory of factorization
of prime ideals of a Dedekind domain in finite extensions of the fraction field.

Binary Quadratic Forms
Binary Quadratic Form (BQF):

f = aX2 + bXY + cY 2, a, b, c ∈ Z

• Discriminant, D := b2 − 4ac.
• Primitive:- a, b, c have no common factor.
• SL2(Z) acts on the set of all BQF’s f by

A ? f := f(px+ qy, rx+ sy), where

A =

(
p q
r s

)
∈ SL2(Z)

• BQFs lying in the same orbit are called
equivalent. These have the same discrimi-
nant and take on the same values.

• Every BQF is equivalent to a "reduced"
form obtainable by a fixed algorithm. For
a fixed discriminantD, the total number of
these reduced forms, and thus, the number
of equivalence classes of BQF’s, is finite.

BQFs & QNFs: the relation
• Let C+

p (d) denote the set of equivalence
classes of binary quadratic forms with dis-
criminant d, and containing only forms
with positive leading coefficient a if d < 0.

• Let dK ≡ 0, 1 (mod 4), be the discrimi-
nant of a quadratic field K.

Theorem. There exists a bijection between the
ideal class group I(K) and C+

p (d).

• As a consequence, one obtains that the
class number hK = |I(K)| is finite.

• Using this bijection, C+
p (d) can be given

a natural group structure, and will hence-
forth be called the form class group.

Computing in C+
p (d)

Some results on class numbers
• C+

p (−47) ∼= Z
5Z

• C+
p (12)

∼=< 1 >

• If −D = 8k + 3 (k > 0), the class number
is divisible by 3 [5].

• For a class number h = 6n± 1, n > 0, we
must have −D = 8k − 1. [5]

• The determinants corresponding to class
number 5 are −D = 127, 103, 70, 47. [5]

• The determinants corresponding to class
number 13 are

−D = 191, 263, 607, 631, 727, 2143. [5]

Splitting of Prime Ideals
Setup: A is a Dedekind domain, K is the field
of fractions of A, L is a finite extension of K
with degree n, B is the integral closure of A in
L. P 6= 0 is a prime ideal of A, β 6= 0 is a
nonzero prime ideal of B. PB denotes the ideal
generated by the set P in the ring B.

• If β ⊇ PB, write β | P , i.e. β divides P .
• PB decomposes as

PB =
∏
β|P

βeβ/P

• eβ/P is the Ramification Index of P in β.
• Inertial Degree of β over P :

fβ/P := [B/β : A/P ]

•
∑
i eifi = n = [B/PB : A/P ]

• P is ramified if eβ/P > 1 for some β | P .
• If L/K is Galois, eβ/P and fβ/P depend

only on P and we have [L : K] = n = efg

Prime Ideals in Number Fields
Let K be a number field.

• In general, there is no straightforward
method to compute the factorization of
pOK for p ∈ Z prime.

• Consider the case where OK = Z[θ] for
some θ ∈ K. In particular, this occurs for
quadratic number fields K. In this case,
a theorem by Kummer gives a method to
compute the factorization of pOK in terms
of the factors of the reduction of the min-
imal polynomial f of θ in the field Z

pZ .

• For K = Q(
√
d) and p ∈ Z prime, the

factorization of pOK is determined by the
value of the Legendre symbol (dp ) and the
residue class of d modulo 4.

Theorem. A prime p ∈ Z ⊂ K is ramified in
K if and only if it divides the discriminant dK .

The Chebotarev Density Theorem
• In general, a prime integer will factor into

several prime ideals in OK . For a given
prime, only finitely may splitting patterns
may occur. The full description of split-
ting of every p in a general Galois exten-
sion is an unsolved problem.

• The theorem states that the frequency of
occurrence of a given pattern for all primes
less than or equal to N (for some large
integer N) tends to a given limit as N goes
to infinity.

Applying Ramification theory
Theorem. A positive integer n can be written
as a sum of two squares if and only if n has a
prime factorization n = pe11 . . . penn (pi distinct)
where ei is even whenever pi ≡ 2 or 3 (mod 4).

Unramified Extensions
• L/K is called an unramified extension if

every prime ideal P of OK is unramified
(every ramification index equals 1) in OL.

• Let K be any algebraic number field. Let
a, b ∈ OK . Let L denote the minimal
splitting field of a polynomial f(X) =
Xn−aX+b, i.e. L = K(α1, . . . αn), where
α1, . . ., αn are the roots of f(X) = 0.
Let D =

∏
i<j(αi − αj)2 be the discrimi-

nant of f(X).

Theorem. If (n − 1)a and nb are relatively
prime, L is unramified over K(

√
D).

Theorem. If (n − 1)a and nb are relatively
prime, any prime ideal of L has the ramifica-
tion index 1 or 2 over K.
Theorem. Let G be a finite group. Then, there
exists an algebraic number field k which has an
unramified extension with Galois group G.
Theorem. Infinitely many real quadratic fields
have a class number divisible by 3.

Class Numbers: More Results
Theorem. Let K = Q(

√
d) be a QNF whose

discriminant dK is divided by at least two dis-
tinct primes. Then, hK is even.
Let g > 1 be an integer and p, q be odd primes.

Theorem.
#{(p, q) | p 6= q (mod 4), 2g | h(−pq)} =∞

Theorem.
#{(p, q) | p ≡ q (mod 4), 2g | h(−pq)} =∞
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