IN PURSUIT OF KNOWLEDGE

Introduction

A Study Of Quadratic Number Fields

Simran T'inani, Prof. Kapil Paranjape

Indian Institute of Science Education and Research Mohali

An algebraic number field, or simply a number field, is a finite extension of the rational numbers Q. When this degree is equal to two, the field is called
a quadratic number field (QNF). Every quadratic number field is of the form Q(v/d) where d is a nonzero square-free integer. Over any number field K,

one may define the ring of integers O = {r € K : r" + ar

n—1

e o Ap—1T

ag = 0 for some a; € Z}. The ring Ok is a Dedekind domain, and thus,

the set H(K) of all its fractional ideals forms an Abelian group. The quotient of this group with the subgroup P(K) of all principal ideals is referred to

as the ideal class group.

H(K)

I(K) = P(K)

The order hyx of the ideal class group is finite, and is called the class number of K.
The goal of this project is to study the ring of integers O, the ideal class group I(K), and the class number hx of a quadratic number field K = Q(v/d),
for different values of d. These objects may be understood better through the study of the theory of binary quadratic forms and the theory of factorization
of prime ideals of a Dedekind domain in finite extensions of the fraction field.

Binary Quadratic Forms
Binary Quadratic Form (BQF):

f=aX*+bXY +¢cY? a,bccZ

Discriminant, D := b* — 4ac.
Primitive:- a, b, ¢ have no common factor.

SLo(Z) acts on the set of all BQF’s f by

Ax f:= f(pxr + qy,rz + sy), where

A= (p q> € SLy(Z)

r S

BQFs lying in the same orbit are called
equivalent. These have the same discrimi-
nant and take on the same values.

Every BQF is equivalent to a "reduced"
form obtainable by a fixed algorithm. For
a fixed discriminant D, the total number of
these reduced forms, and thus, the number
of equivalence classes of BQF’s, is finite.

BQFs & QNFs: the relation

e Let CJ(d) denote the set of equivalence
classes of binary quadratic forms with dis-
criminant d, and containing only forms
with positive leading coefficient a it d < 0.

e Let dg = 0,1 (mod 4), be the discrimi-
nant of a quadratic field K.

Theorem. There exists a bijection between the
ideal class group 1(K) and C7 (d).
e As a consequence, one obtains that the
class number hx = |I(K)| is finite.
e Using this bijection, C(d) can be given
a natural group structure, and will hence-
forth be called the form class group.

° ° _I_
Computing in C; (d)
Some results on class numbers

C}j(—zl?) ~ 5£z

Cr(12) =< 1>

If —D =8k + 3 (k> 0), the class number
is divisible by 3 [5].

For a class number h = 6n £+ 1, n > 0, we
must have —D = 8k — 1. |5]

The determinants corresponding to class
number 5 are —D = 127,103, 70,47. |5]

The determinants corresponding to class
number 13 are

—D =191, 263,607,631, 727, 2143. [5|

Splitting of Prime Ideals

Setup: A is a Dedekind domain, K is the field
of fractions of A, L is a finite extension of K
with degree n, B is the integral closure of A in
L. P # 0 is a prime ideal of A, 8 # 0 is a
nonzero prime ideal of B. PB denotes the ideal
generated by the set P in the ring 5.

o If 3D PB, write 8| P, i.e. § divides P.
e PB decomposes as
PB = H j3¢s/P
BlP

eg,p 18 the Ramification Indexr of P in [.
Inertial Degree of 8 over P:

fo/p = 1B/B: A/P)
z:ieﬁﬂ;ZZNMZIUB/PUQZJA/}ﬂ
P is ramified if eg/p > 1 for some 3 | P.

If L/K is Galois, eg,p and fz/p depend
only on P and we have |L : K| =n =efg

Prime Ideals in Number Fields

Let K be a number field.

e In general, there is no straightforward
method to compute the factorization of
pOg for p € Z prime.

e Consider the case where O = Zl|0] for
some 6 € K. In particular, this occurs for
quadratic number fields K. In this case,
a theorem by Kummer gives a method to
compute the factorization of pOg in terms
of the factors of the reduction of the min-
imal polynomial f of 6 in the field pAZ.

e For K = Q(v/d) and p € Z prime, the
factorization of pQOg is determined by the
value of the Legendre symbol (%) and the
residue class of d modulo 4.

Theorem. A primep e Z C K is ramified in
K if and only if it divides the discriminant dg .

The Chebotarev Density Theorem

e In general, a prime integer will factor into
several prime ideals in Og. For a given
prime, only finitely may splitting patterns
may occur. The full description of split-
ting of every p in a general GGalois exten-
sion 1s an unsolved problem.

e The theorem states that the frequency of
occurrence of a given pattern for all primes
less than or equal to N (for some large
integer IV) tends to a given limit as N goes
to infinity.

Applying Ramification theory

Theorem. A positive integer n can be written
as a sum of two squares if and only if n has a
prime factorization n = pi*...p<» (p; distinct)
where e; is even whenever p; = 2 or 3 (mod 4).

Unramified Extensions

e IL/K is called an unramified extension if
every prime ideal P of Ok is unramified
(every ramification index equals 1) in Oy..

e Let K be any algebraic number field. Let
a,b € Og. Let L denote the minimal
splitting field of a polynomial f(X) =
X"—aX+b,ie. L =K(aq,...a,), where
a1, ..., o are the roots of f(X) = 0.

Let D = ][, ;(c; — a;)? be the discrimi-
nant of f(X).

Theorem. If (n — 1)a and nb are relatively
prime, L is unramified over K(v/D).

Theorem. If (n — 1)a and nb are relatively
prime, any prime ideal of L has the ramifica-
tion index 1 or 2 over K.

Theorem. Let G be a finite group. Then, there
exists an algebraic number field k which has an
unramified extenston with Galois group G.

Theorem. Infinitely many real quadratic fields
have a class number divisible by 3.

Class Numbers: More Results

Theorem. Let K = Q(\/d) be a QNF whose

discriminant dg s divided by at least two dis-
tinct primes. Then, hi 1s even.

Let g > 1 be an integer and p, ¢ be odd primes.

Theorem.

#1(p,q) | p# q

Theorem.

#{(p,q) | p=q

(mod 4), 2g | h(—pq)} = oo

(mod 4), 2g | h(—pq)} = o0
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